Cell-cell recognition during fertilization in the red alga, Aglaothamnion oosumiense(Ceramiaceae, Rhodophyta)

  • Sung-Ho Kim
  • Gwang Hoon Kim
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 137)


The binding of fluorescein isothiocyanate (FITC) conjugated lectins to gametes of Aglaothamnion oosumiense Itono during fertilization was studied by the use of confocal microscopy. The physiological effects of lectins and carbohydrates on gamete binding were also examined. Four different lectins, concanavalin A (ConA), soybean agglutinin (SBA), Dolichos biflorus agglutinin (DBA) and wheat germ agglutinin (WGA) bound to the surface of spermatia, but each lectin labelled a different region of the spermatium. SBA and DBA bound only to the spermatial appendages but ConA bound to all the spermatial surface except the spermatial appendages. WGA labelled a narrow region that connects the spermatial body and appendages. During fertilization, the ConA and WGA specific substances on the spermatial surface moved towards the area contacting the trichogyne and accumulated on the surface of the fertilization canal. Spermatial binding to trichogynes was inhibited by pre-incubation of spermatia with SBA or ConA, while trichogyne receptors were blocked by the complementary carbohydrates, D-glucose or N-acetyl-galactosamine, respectively. WGA and DBA as well as their complementary carbohydrates had little effect on gamete binding. The inhibitory effects of ConA and SBA were increased when the two lectins were applied simultaneously. The inhibitory effects of both lectins were partially reversed (to 80–90% of controls) by addition of complementary carbohydrates at the same time. The results suggested that SBA and ConA receptors on the spermatial surface are involved in gamete recognition in Aglaothamnion oosumiense.

Key words

Aglaothamnion oosumiense cell-cell recognition confocal microscope fertilization lectin Rhodophyta 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adair, W. S., B. C. Monk, R. Cohen, C. Hwang & W. Goodenough, 1982. Sexual agglutinins from the Chlamydomonas flagellar membrane. J. Biol. Chem. 257: 4593–4602.PubMedGoogle Scholar
  2. Adair, J., 1985. Characterization of Chlamydomonas sexual agglutinins. J. Cell. Sci. (Suppl.) 2: 233–260.Google Scholar
  3. Bolwell, G. P., J. A. Callow, M. E. Callow & L.V. Evans, 1979. Fertilization in brown algae. II. Evidence for lectin sensitive complementary receptors involved in gamete receptors involved in gamete recognition in Fucus serratus. J. Cell Sci. 36: 19–30.PubMedGoogle Scholar
  4. Bolwell, G. P., J. A. Callow & L. V. Evans, 1980. Fertilization in brown algae. III. Preliminary characterization of putative gamete receptors from eggs and sperm of Fucus serratus. J. Cell Sci. 43: 209–224.PubMedGoogle Scholar
  5. Callow, J. A., 1985. Sexual recognition and fertilization in brown algae. J. Cell. Sci. (Suppl.) 2: 219–232.Google Scholar
  6. Catt, J. W., H. I. M. V. Vithanage, J. A. Callow, M. E. Callow & L. V. Evans, 1983. Fertilization in brown algae. V. Further investigation of lectins as surface probes. Exp. Cell Res. 147: 127–133.PubMedCrossRefGoogle Scholar
  7. Chrispeels, M. J. & N. V. Raikhel, 1991. Lectin, lectin genes, and their role in plant defense. Plant Cell 3:1–9.PubMedGoogle Scholar
  8. Goff, L. J., 1982. The biology of parasitic algae. In Round, F. E. & D. J. Chapman (eds), Progress in Phycological Research I. Elsevier Biomedical Press, Amsterdam: 289–370.Google Scholar
  9. Goff, L. J. & A. W. Coleman, 1985. The role of secondary pit connections in red algal parasitism. J. Phycol. 21: 483–508.CrossRefGoogle Scholar
  10. Green, J. R., J. L. Jones, C. J. Stafford & J. A. Callow, 1990. Fertilization in Fucus: exploring the gamete cell surface with monoclonal antibodies. In Dale, B. (ed.), Mechanism of fertilization. NATO ASI series, Vol. H. 45, Springer-Verlag, Berlin, Heidelberg: 189–202.CrossRefGoogle Scholar
  11. Guillard, R. R. L. & J. H. Ryther, 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve). Gran. Can. J. Microbiol. 8: 229–239.CrossRefGoogle Scholar
  12. Jones, J. L., J. A. Callow & J. R. Green, 1988. Monoclonal antibodies to sperm surface antigens of the brown alga Fucus serratus exhibit region, gamete, species and genus preferential binding. Planta 176: 298–306.CrossRefGoogle Scholar
  13. Jones, J. L., J. A. Callow & J. R. Green, 1990. The molecular nature of Fucus serratus sperm surface antigens recognised by monoclonal antibodies FS1 to FS12. Planta 182: 64–71.CrossRefGoogle Scholar
  14. Karlsson, K. A., 1991. Glycobiology: a growing field for drug design. TIBS. 12: 265–272.Google Scholar
  15. Kim, G. H., 1997. Gamete recognition and signal transduction during fertilization in Red Algae. Algae (Kor. J. Phycol.) 12: 263–268.Google Scholar
  16. Kim, G. H. & L. Fritz, 1993a. Gamete recognition during fertilization in a red alga Antithamnion nipponicum. Protoplasma 174: 69–73.CrossRefGoogle Scholar
  17. Kim, G. H. & L. Fritz, 1993b. Ultrastructure and cytochemistry of early spermatangial development in Antithamnion nipponicum (Ceramiaceae, Rhodophyta). J. Phycol. 29: 797–805.CrossRefGoogle Scholar
  18. Kim, G. H. & L. Fritz, 1993c. A signal glycoprotein with D-mannosyl residues is involved in the wound-healing response of Antithamnion sparsum (Ceramiales, Rhodophyta). J. Phycol. 29: 85–90.CrossRefGoogle Scholar
  19. Kim, G. H., I. K. Lee & L. Fritz, 1995. The wound-healing responses of Antithamnion nipponicum and Griffithsia pacifica (Ceramiales, Rhodophyta) monitored by lectins. Phycol. Res. 43: 161–165.CrossRefGoogle Scholar
  20. Kim, G. H., I. K. Lee & L. Fritz, 1996. Cell-cell recognition during the fertilization in a red alga, Antithamnion sparsum (Ceramiaceae, Rhodophyta). Plant Cell Physiol. 37: 621–628.CrossRefGoogle Scholar
  21. Magruder, W., 1984. Specialized appendages on spermatia from the red alga Aglaothamnion neglectum (Ceramiales, Ceramaiceae) specially bind with trichogynes. J. Phycol. 20: 436–440.CrossRefGoogle Scholar
  22. Mine, I. & M. Tatewaki, 1994. Gamete surface and attachment during fertilization of Palmaria sp. (Palmariales, Rhodophyta). Jpn. J. Phycol. 42: 291–299.Google Scholar
  23. Musgrave, A., E. van Eijk, R. Welscher, R. Broekman, P. Lens, W. Homan & H. van den Ende, 1981. Sexual agglutination factor from Chlamydomonas eugametos. Planta 153: 362–369.CrossRefGoogle Scholar
  24. Pickett-Heaps, J. D. & J. West, 1998. Time-lapse video observations on sexual plasmogamy in the red alga Bostrychia. Eur. J. Phycol. 33:43–56.CrossRefGoogle Scholar
  25. Samson, M., F. M. Klis, W. L. Homan, P. van Egmond, A. Musgrave & H. van den Ende, 1987. Composition and properties of the sexual agglutinins of the flagellated green alga Chlamydomonas eugametos. Planta 170: 314–321.CrossRefGoogle Scholar
  26. Schmid, C., 1993. Cell-cell recognition during fertilization in Ec-tocarpus siliculosus (Phaeophyceae). Hydrobiologia 260/261: 437–443.CrossRefGoogle Scholar
  27. Schmid, C., N. Schroer & D. Muller, 1994. Female gamete membrane glycoproteins potentially involved in gamete recognition in Ectocarpus siliculosus (Phaeophyceae). Plant Sci. 102: 61–67.CrossRefGoogle Scholar
  28. Sharon, N. & H. Lis, 1989. Lectins as cell recognition molecules. Science 177: 949–959.CrossRefGoogle Scholar
  29. Stafford, C. J., J. A. Callow & J. R. Green, 1992. Isolation and characterization of plasma membranes from Fucus serratus eggs. Br. phycol. J. 27: 429–434.CrossRefGoogle Scholar
  30. van den Ende, H., M. L. van den Briel, R. Lingeman, P. van der Gulik & T. Munnik, 1992. Zygote formation in the homothallic green alga Chlamydomonas monica Strehlow. Planta 188: 551–558.CrossRefGoogle Scholar
  31. Waaland, S. D., 1990. Development. In Cole, K. M. & G. R. Sheath (eds), Biology of the Red Algae. Cambridge University Press, New York: 259–273.Google Scholar
  32. Wassarman, P. M., 1987. The biology and chemistry of fertilization. Nature 235: 553–560.Google Scholar
  33. Watson, B. A. & S. D. Waaland, 1983. Partial purification and characterization of a glycoprotein cell fusion hormone from Griffithsia pacifica, a red alga. Plant Physiol. 71: 327–332.PubMedCrossRefGoogle Scholar
  34. Watson, B. A. & S. D. Waaland, 1986. Further biochemical characterization of a cell fusion hormone from the red alga, Griffithsia pacifica. Plant Cell Physiol. 27: 1043–1050.Google Scholar
  35. Wiese, L. & D. W. Shoemaker, 1970. On sexual agglutination and mating-type substances (gamones) in isogamous heterothal-lic Chlamydomonas. II. The effect of concanavalin A upon the mating-type reaction. Biol. Bull. 138: 88–95.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Sung-Ho Kim
    • 1
  • Gwang Hoon Kim
    • 1
  1. 1.Department of BiologyKongju National University, ShingwandongKongjushi, ChungnamKorea

Personalised recommendations