Skip to main content

Part of the book series: NATO Science Series ((ASEN2,volume 63))

Abstract

Electrostatic separation is extensively used for the selective sorting of granular mixtures, by means of the electric forces, which act on charged or polarized bodies. The roll-type separator with combined corona-electrostatic field has been proved to be the most advantageous solution when the purpose is to isolate conductive particles form nonconductive ones. The paper presents the contributions of the High Intensity Electric Fields Laboratory of the Technical University of Cluj-Napoca to the development of this technique for various applications in the recycling industry. A multitude of factors inffluence the efficiency of the separation process and the authors show how the results of numerical modeling guided the design of new installations and the optimization of their operating conditions. Laboratory and pilot plant brought evidence of the effectiveness of the proposed technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alter, H. (1987) Materials and energy from refuse: Trends in the United States Resources and conservation 14, 29–38.

    Article  CAS  Google Scholar 

  2. Gotoh, S. (1987) Waste management and recycling trends in Japan, Resources and Conservation 14, 15–28.

    Article  CAS  Google Scholar 

  3. Dascalescu, L. Iuga, A., and Morar, R. (1993) Corona - electrostatic separation: an efficient technology for the recovery of metals and plastics from industrial wastes, Magnetic and Electrical Separation 4, 241–255.

    Article  CAS  Google Scholar 

  4. Lawyer, J.E., and Dyrenforth, W.P. (1973) Electrostatic separation, in A.D. Moore(ed), Electrostatics and its Applications Wiley, New York, pp. 221–249.

    Google Scholar 

  5. Kwertkus, B.A. (1998) Particle triboelectrification and its use in the electrostatic separation process. Particulate Science and Technology 16, 55–68.

    Article  Google Scholar 

  6. Higashiyama, Y., and Asano, K. (1998) Recent progress in electrostatic separation technology. Particulate Science and Technology 16, 77–90.

    Article  CAS  Google Scholar 

  7. Inculet, I. (1986)Electrostatic Mineral Separation, Wiley, New York.

    Google Scholar 

  8. Haga, K. (1995) Applications of the electrostatics separation Technique, in J.S. Chang, A.J. Kelly and J.M. Crowley (eds)Handbook of Electrostatics Processes, Marces Dekker, New York, pp. 365–397.

    Google Scholar 

  9. Takahashi, T., Watabe, Y., Tabei, K. and Haga, K. (1980) New equipment for resource recovery: electrostatic separator and eddy current separator, in Conf.Rec.1980IEEE/IAS Ann. Meet., Cincinnati, pp. 1026–1031.

    Google Scholar 

  10. Knoll, F.S., and Taylor, J.B. (1985) Advances in electrostatic separation, in:Mineral and Metallurgical Processing, pp.106–114.

    Google Scholar 

  11. Iuga, A., Dascalescu, L. Morar, R. Csorvasy, I., and Neamtu, V. (1989) Corona-electrostatic separators of recovery of waste non-ferrous metals. J. Electrostatics 23, 235–243.

    Article  CAS  Google Scholar 

  12. Iji, M., and Yokohama, S.(1997) Recycling of printed boards with mounted electronic components, Circuit World 223, 10–15.

    Article  Google Scholar 

  13. Morar, R., Iuga, A. Dascalescu, L. and Samuila, A. (1993) Factors which influence the insulation -metal electroseparation. J. Electrostatics 30, 403–412.

    Article  CAS  Google Scholar 

  14. Dascalescu, L. Samuila, A., Iuga, A. Morar, R. and Csorvasy, I. (1994) Influence of material superficial moisture of insulation-metal electroseparation. IEEE Trans.Ind.Appl. 30, 844–852.

    Article  Google Scholar 

  15. Iuga, A., Morar, R., Samuila, A., and Dascalescu, L. (1998) Electrostatic separation of metals and plastics from granular industrial wasters, in ConfRec.1998 IEEE/IAS Ann. Meet. Saint Louis, pp. 1953–1960.

    Google Scholar 

  16. Iuga, A., Morar, R., Samuila, A., Cuglesan, I. Mihailescu, M., and Dascalescu, L. (1999) Electrostatic separation of brass from industrial wastes, IEEE Trans.Ind.Appl.(in press).

    Google Scholar 

  17. Iuga, A., Morar, R., Samuila, A., Cuglesan, I. Mihailescu, M., and Dascalescu, L. (1980)High-Tension and Electrostatic Separator. Leaflet 880–3M.SP, Eriez Magnetics-Canada.

    Google Scholar 

  18. Iuga, A., Morar, R., Samuila, A., Cuglesan, I., Mihailescu, M., and Dascalescu, L. (1984) Elektrosortierung System. Heft 1518/12.84, Lurgi-Germany.

    Google Scholar 

  19. Iuga, A., Morar, R., Samuila, A., Cuglesan, I., Mihailescu, M., and Dascalescu, L. (1989) Electrostatic Separation System. Cat. No. Ess 10923, Mineral Deposits-Australia.

    Google Scholar 

  20. Dascalescu, L, Iuga, A., Morar, R., Neamtu, V., and Suarasan, I. (1994) Corona charging of particulate in the corona field of roll-type electroseparators, J. Phys. D: Appl. Phys 27, 1242–1251.

    Article  CAS  Google Scholar 

  21. Iuga, A., Morar, R., Dascalescu, L., Samuila, A. and Rafiroiu, D. (1993) A new type of corona electrode for high-tension separators. Magnetic and Electrical Separation 4, 75–90.

    Article  CAS  Google Scholar 

  22. Dascalescu, L. Morar, R., Iuga, A., Neamtu, V., and Suarasa, I. (1993) Charge-neutralization electrodes for high-tension separators. Magnetic and Electrical Separation 4, 91–105.

    Article  CAS  Google Scholar 

  23. Dascalescu, L., Morar, R., Iuga, A. Samuila, A., and Neamtu, V. (1998) Electrostatic separation of insulating and conductive particles from granular mixes, Particulate Science and Technology 16, 25–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dascalescu, L., Morar, R., Iuga, A., Samuila, A., Mihailescu, M. (1999). Electrostatic Technologies for the Recycling of Non-Ferrous Metals and Plastics from Wastes. In: Inculet, I.I., Tanasescu, F.T., Cramariuc, R. (eds) The Modern Problems of Electrostatics with Applications in Environment Protection. NATO Science Series, vol 63. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4447-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4447-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5930-2

  • Online ISBN: 978-94-011-4447-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics