Skip to main content

Sustainable Pollution Prevention Through Mass Integration

  • Chapter
Tools and Methods for Pollution Prevention

Part of the book series: NATO Science Series ((ASEN2,volume 62))

Abstract

Pollution prevention is one of the key objectives of a processing facility. Notwithstanding its importance, it must be reconciled with other process objectives such as cost effectiveness, quality assurance, yield enhancement, debottlenecking, safety, and energy conservation. For many years, environmental issues of manufacturing operations have been conveniently isolated and addressed with little or no interaction with the other process objectives. The result has been a widespread adoption of pollution control, strategies that focus primarily on end-of-pipe treatment, in which chemical, biological, and physical processes are applied to terminal,streams to reduce toxicity or magnitude of environmentally undesirable compounds. This approach has enabled engineers to avoid in-plant changes and has, therefore, allowed the development of pollution-control technologies as stand-alone devices that can be used to treat the symptoms without much regard to the root causes within the core processing operations. The result has been in the form of solutions that worked but nonetheless had poor economic indicators. This situation has led to the common misconception that the solution to environmental problems of the process is an economic burden and that objectives of cost effectiveness and benign manufacturing cannot be reconciled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achenie, L. E. K., and Duvedi, A. P. (1996). Designing environmentally safe refrigerants using mathematical programming, Chem. Eng. Sci., 51 (15), 3727–3739.

    Article  Google Scholar 

  2. Anastas, P. T. and Williamson, T. C. (eds.) (1996). “Green chemistry: Designing chemistry for the environment,” ACS Symp. Ser., vol. 626, ACS Pub., Washington, D. C.

    Book  Google Scholar 

  3. Anastas, P. T. and Farris, C. A. (eds.) (1994). “Benign by design: Alternative synthetic design for pollution prevention,” ACS Symp. Ser., vol. 577, ACS Pub., Washington, D. C..

    Book  Google Scholar 

  4. Beveridge, G. S. G. and Schechter, R. (1970).Optimization: Theory and Practice. McGraw Hill, New York.

    Google Scholar 

  5. Brignole, E. A., Bottini, S., and Gani, R. (1986). A strategy for the design and selection of solvents for separation processes, Fluid Phase Equilibria, 29, 125–132.

    Article  CAS  Google Scholar 

  6. Cabezas, H. and R. Zhao (1998). Designing environmentally benign solvents: Physical property considerations. AIChE Spring Meeing, New Orleans, March.

    Google Scholar 

  7. Chase, V. (1995). Green chemistry: The middle way to a cleaner environment. R & D Magazine, 25–26, August

    Google Scholar 

  8. Constantinou, L., Jacksland, C., Bagherpour, K., Gani, R. and Bogle, L. (1994). Application of group contribution approach to tackle environmentally-related problems, AIChE Symp. Ser., 90 (303), 105–116.

    Google Scholar 

  9. Crabtree, E. W. and El-Halwagi, M. M. (1994). Synthesis of environmentally-acceptable reactions, AIChE Symp. Ser, 90(303), 117–127.

    Google Scholar 

  10. Dhole, V. R., Ramchandani, N., Tainsh, R. A., and Wasilewski, M. (1996). Make your process water pay for itself, Chem. Eng., January, pp. 100–103.

    Google Scholar 

  11. Douglas, J. M. (1992). Process synthesis for waste minimization. Ind. Eng. Chem. Res., 31, 238–243.

    Article  CAS  Google Scholar 

  12. Dunn, R. F., A. M. Dobson, and M. M. El-Halwagi (1997) “Optimal Design of Environemntally Acceptable Solvent Blends for Coating,”Adv. Env. Res. 1(2), 243–252.

    Google Scholar 

  13. Dunn, R. F. and El-Halwagi, M. M. (1993). Optimal recycle/reuse policies for minimizing the wastes of pulp and paper plants, Environ. Sci. Health A28 (1), 217–234.

    CAS  Google Scholar 

  14. Dunn, R. F., and El-Halwagi, M. M. (1996). Design of cost-effective VOC recovery systems. TVA Pub., Muscle Shoals, AL.

    Google Scholar 

  15. Dunn, R. F., and El-Halwagi, M. M. (1994a). Optimal design of multicomponent VOC Condensation Systems, J. Hazard. Mater., 38, 187–206.

    Article  CAS  Google Scholar 

  16. Dunn, R. F., and El-Halwagi, M. M. (1994b). Selection of optimal VOC condensation systems, J. Waste Manage. 14 (2), 103–113.

    Article  CAS  Google Scholar 

  17. Dunn, R. F., and B. K. Srinivas, “Synthesis of Heat-Induced Waste Minimization Networks (HIWAMINs),” Adv. Env. Res., 1 (3), pp. 275–301 (1997).

    Google Scholar 

  18. Dunn, R. F., Zhu, M., Srinivas, B. K., and El-Halwagi, M. M. (1995). Optimal design of energy induced separation networks for VOC recovery, AIChE Symp. Ser. 90 (303), 74–85.

    Google Scholar 

  19. Dunn, R. F., El-Halwagi, M. M., Lakin, J., and Serageldin, M. (1995). Selection of organic solvent blends for environmental compliance in the coating industries. Proceedings of the First International Plant Operations and Design Conference, eds. E. D. Griffith, H. Kahn and M. C. Cousins, Vol. III, pp. 83–107, AIChE, New York.

    Google Scholar 

  20. Dye, S. R., Berry, D. A. and Ng, K. M. (1995). Synthesis of crytallization-based separation schemes, AIChE Symp. Ser., 91 (304), 238–241.

    Google Scholar 

  21. Edgar, T. F. and Himmelblau, D. M. (1988). Optimization of chemical processes. McGraw Hill, New York.

    Google Scholar 

  22. El-Halwagi, M. M. (1997) “Pollution Prevention through Process Integration: Systematic Design Tools,” AcademicPress, San Diego.

    Google Scholar 

  23. El-Halwagi, M. M. (1993). A process synthesis approach to the dilemma of simultaneous heat recovery, waste reduction and cost effectiveness. In “Proceedings of the Third Cairo International Conference on Renewable Energy Sources” (A. I. El-Sharkawy and R. H. Kummler, eds.), Vol. 2, pp. 579–594.

    Google Scholar 

  24. El-Halwagi, M. M. (1993). Optimal design of membrane hybrid systems for waste reduction, Sep. Sci. Technol. 28 (1–3), 283–307.

    Article  CAS  Google Scholar 

  25. El-Halwagi, M. M., (1992). Synthesis of reverse osmosis networks for waste reduction, AIChE J.,38 (8),1185–1198.

    Article  CAS  Google Scholar 

  26. El-Halwagi A. M., and El-Halwagi, M. M. (1992). Waste minimization via computer aided chemical process synthesis-A new design philosophy, TESCE J. 18 (2), 155–187.

    CAS  Google Scholar 

  27. El-Halwagi, M. M., El-Halwagi, A. M., and Manousiouthakis, V. (1992). Optimal design of dephenolization networks for petroleum-refinery waste, Trans. Inst. Chem. Eng. 70, Part B,131–139.

    CAS  Google Scholar 

  28. El-Halwagi, M. M., Hamad, A. A. and Garrison, G. W. (1996). Synthesis of waste interception and allocation networks, AIChE J., 42(11), 3087–3101.

    Article  CAS  Google Scholar 

  29. El-Halwagi, M.M. and Manousiouthakis, V. (1989a). Synthesis of mass-exchange networks, AIChE J., 35 (8), 1233–1244.

    Article  CAS  Google Scholar 

  30. El-Halwagi, M. M., and Manousiouthakis, V. (1989b). Design and analysis of mass exchange networks with multicomponent targets, AIChE Annu. Meet., San Francisco, November.

    Google Scholar 

  31. El-Halwagi, M. M., and Manousiouthakis, V. (1990a). Automatic synthesis of mass exchange networks with single-component targets, Chem. Eng. Sci. 45 (9), 2813–2831.

    Article  CAS  Google Scholar 

  32. El-Halwagi, M. M., and Manousiouthakis, V. (1990b). Simultaneous synthesis of mass exchange and regeneration networks, AIChE J., 36 (8),1209–1219.

    Article  CAS  Google Scholar 

  33. El-Halwagi, M. M. and Spriggs, H. D. (1998). Solve Design Puzzles with Mass Integration, Chem. Eng. Prog., August, pp. 25–44.

    Google Scholar 

  34. El-Halwagi, M. M. and Spriggs, H. D. (1996). An integrated approach to cost and energy efficient pollution prevention. Proceedings of Fifth World Congr. of Chem. Eng., Vol. III, pp. 344–349, San Diego.

    Google Scholar 

  35. El-Halwagi, M. M and Srinivas, B. K. (1992). Synthesis of reactive mass exchange networks, Chem. Eng. Sci., 47 (8), 2113–2119.

    Article  CAS  Google Scholar 

  36. El-Halwagi, M.M., Srinivas, B. K., and Dunn, R. F. (1995). Synthesis of optimal heat-induced separation networks, Chem. Eng. Sci., 50 (1),81–97.

    Article  CAS  Google Scholar 

  37. Evangelista, F. (1986). Improved graphical analytical method for the design of reverse osmosis desalination plants, Ind. Eng. Chem. Process Des. Dey., 25 (2), 366–375.

    Article  CAS  Google Scholar 

  38. Garrison, G. W., Spriggs, H. D., and El-Halwagi, M. M. (1996). A global approach to integrating environmental, energy, economic and technological objectives. Proceedings of Fifth World Congr. of Chem. Eng., Vol. I, pp. 675–680, San Diego.

    Google Scholar 

  39. Garrison, G. W., Hamad, A. A. and El-Halwagi, M. M. (1995a). Synthesis of waste interception networks. AIChE Annu. Meet., Miami.

    Google Scholar 

  40. Garrison, G. W., Cooley, B. L., and El-Halwagi, M. M. (1995b). Synthesis of mass exchange networks with multiple target mass separating agents, Dev. Chem. Eng. Miner. Proc. 3 (1), 31–49

    Article  Google Scholar 

  41. Grossmann, I. E., Editor Global Optimization in Engineering Design, Kluwer Academic Pub., Dordrecht, The Netherlands, 1996

    Google Scholar 

  42. Gundersen, T. and Naess, L. (1988). The synthesis of cost optimal heat exchanger networks: an industrial review of the state of the art, Comput. Chem. Eng., 12 (6), 503–530.

    Article  CAS  Google Scholar 

  43. Hallale, N., and D. M. Fraser, (1997). Synthesis of Cost Optimum Gas Treating Process Using Pinch Analysis. Proceedings, Top. Conf. on Sep. Sci. and Techs., W. S. Ho, and R. G. Luo, eds., Part II, pp. 1,708–1,713, AIChE, New York.

    Google Scholar 

  44. Hamad, A. A., V. Varma, G. Krishnagopalan, and M. M. El-Halwagi (1998). Application of Mass Integration to Reduce Methanol and Effluent Discharge in Pulp Mills TAPPI J., October.

    Google Scholar 

  45. Hamad, A. A., and M. M. El-Halwagi, (1998). Simultaneous Synthesis of Mass Separating Agents and Interception Networks, Trans. I. Chem. E., 76, Part A, pp. 376–388.

    Article  CAS  Google Scholar 

  46. Hamad, A. A., Garrison, G. W., Crabtree, E. W. and El-Halwagi, M. M. (1996). Optimal design of hybrid separation systems for waste reduction. Proceedings of Fifth World Congr. of Chem. Eng., Vol. III, pp. 453–458, San Diego.

    Google Scholar 

  47. Hamad, A. A., Varma, V., El-Halwagi, M. M. and Krishnagopalan, G. (1995). Systematic integration of source reduction and recycle reuse for the cost-effective compliance with the cluster rules. AIChE Annu. Meet., Miami.

    Google Scholar 

  48. Hilaly, A. and S. Sikdar, Process Simulation Tools for Pollution Prevention: New Methods Reduce the Magnitude of Waste Streams, Chem. Eng., pp. 98–105, Feb. 1996.

    Google Scholar 

  49. Huang, Y. L., and Fan, L. T. (1995). Intelligent process design and control for in-plant waste minimization. In Waste Minimization Through Process Design (A. P. Rossiter, eds.), pp.165–180. McGraw Hill, New York.

    Google Scholar 

  50. Huang, Y. L., and Edgar, T. F. (1995). Knowledge based design approach for the simultaneous minimization of waste generation and energy consumption in a petroleum refinery. In Waste Minimization Through Process Design (A. P. Rossiter, eds.), pp. 181–196. McGraw Hill, New York.

    Google Scholar 

  51. Joback, K. G. (1994) Solvent Substitution for Pollution Prevention, AIChE Symp. Ser. 90 (303), 98–104.

    Google Scholar 

  52. Joback, K. G., and Stephanopoulos, G. (1990). Designing molecules possessing desired physical property values. In Foundations of Computer Aided Process Design ‘FOCAPD’ III (J. J. Siirola, I. Grossmann, and G. Stephanopoulos, eds.), pp. 363–387. CACHE/Elsevier, New York.

    Google Scholar 

  53. Kiperstok, A., and Sharratt, P. N. (1995). On the optimization of mass exchange networks for removal of pollutants, Trans. Inst. Chem. Eng. 73, Part B, 271–277.

    CAS  Google Scholar 

  54. Kuo, W. C. J. and R. Smith, Designing for the Interactions Between Water Use and Effluent Treatment, Trans. Inst. Chem. Eng., 76, Part A, 287–301, 1998.

    Article  CAS  Google Scholar 

  55. Linnhoff, B., Townsend, D. W., Boland, D., Hewitt, G. F., Thomas, B. E. A., Guy, A. R., and Marsland, R. H. (1994). A User Guide on Process Integration for the Efficient Use of Energy., Revised 1st Ed., Institution of Chemical Engineers, Rugby, UK.

    Google Scholar 

  56. Linnhoff, B. (1993). Pinch analysis- A state of the art overview, Trans. Inst. Chem. Eng. Chem. Eng. Res. Des., 71, Part A5, 503–522.

    Google Scholar 

  57. Malone, M. F. and Doherty, M. F. (1995). Separation system synthesis for nonideal liquid mixtures. AIChE Symp. Ser., 91 (304), 9–18.

    Google Scholar 

  58. Naser, S. F. and Fournier, R. L. (1991). A system for the design of an optimum liquid-liquid extractant molecule. Comp. Chem. Eng., 15 (6), 397–414.

    Article  CAS  Google Scholar 

  59. Nishida, N., Stephanopoulos, G., and Westerberg, A. (1981). A review of process synthesis. AIChE J., 27 (3), 321–351.

    Article  CAS  Google Scholar 

  60. Noureldin, M. B. and M. M. El-Halwagi (1998). A shortcut approach to integrating design and operation. AIChE Spring Meeting, New Orleans, March.

    Google Scholar 

  61. Odele, O. and Macchietto, S. (1993). Computer aided molecular design: A novel method for optimal solvent selection. Fluid Phase Equilibria, 82, 47–54.

    Article  CAS  Google Scholar 

  62. Parthasarathy, G. and El-Halwagi M. M. (1997) “Mass Integration for Multicomponent Nonideal Systems,” presented at AIChE Annual Meeting (Los Angeles), AIChE, New York.

    Google Scholar 

  63. Papalexandri, K. P., and Pistikopoulos, E. N. (1994). A multiperiod MINLP model for the synthesis of heat and mass exchange networks. Comput. Chem. Eng. 18 (12), 1125–1139.

    Article  CAS  Google Scholar 

  64. Reklaitis, G. V., Ravindran A., and Ragsdell, K. M. (1983). Engineering Optimization. Wiley, New York.

    Google Scholar 

  65. Richburg, A. and El-Halwagi, M. M. (1995). A graphical approach to the optimal design of heat-induced separation networks for VOC recovery. AIChE Symp. Ser., 91 (304), 256–259.

    Google Scholar 

  66. Rudd, D. F., Powers, G.J. and Siirola, J. J. (1973). “Process Synthesis”;, Prentice Hall, Inc., New Jersey.

    Google Scholar 

  67. Sahinidis, N. V. and Grossmann, I. E. (1991). Convergence properties of generalized Benders decomposition“ Comput. Chem. Eng., 15 (7), 481–491.

    Article  CAS  Google Scholar 

  68. Shelley, M., G. Parthasarathy, and M. El-Halwagi (1998). Clustering Techniques for the Optimal Design of Processing Facilities for Complex Hydrocarbons. AIChE Annual Meeting, Miami, November.

    Google Scholar 

  69. Shenoy, U. V. (1995). “Heat Exchange Network Synthesis: Process Optimization by Energy and Resource Analysis.” Gulf Pub. Co., Houston, TX.

    Google Scholar 

  70. Spriggs, H. D., “Design for Pollution Prevention,” AIChE Symp. Ser., 90 (303), pp. 1–11 (1995).

    Google Scholar 

  71. Srinivas, B. K., and El-Halwagi, M. M. (1994a). Synthesis of reactive mass-exchange networks with general nonlinear equilibrium functions. AIChE J. 40(3), 463–472.

    Article  CAS  Google Scholar 

  72. Srinivas, B. K., and El-Halwagi, M. M. (1994b). Synthesis of combined heat reactive mass-exchange networks. Chem. Eng. Sci, 49 (13), 2059–2074.

    Article  CAS  Google Scholar 

  73. Srinivas, B. K., and M. M. El-Halwagi, (1993). Optimal Design of Pervaporation Systems for Waste Reduction.

    Google Scholar 

  74. Comp. Chem. Eng. 17 (10), pp. 957–970.

    Google Scholar 

  75. Stanley, C., and M. M. El-Halwagi, (1995). Synthesis of Mass-Exchange Networks Using Linear

    Google Scholar 

  76. Programming Techniques. In “Waste Minimization through Process Design,” A. P. Rossiter

    Google Scholar 

  77. ed., pp. 209–224, McGraw-Hill, New York.

    Google Scholar 

  78. Stephanopoulos, G. and Townsend, D. (1986). Synthesis in process development.Chem. Eng. Res. Des., 64 (3), 160–174.

    CAS  Google Scholar 

  79. US EPA (1994). Paris Manual. EPA, Cincinnati, Ohio.

    Google Scholar 

  80. Vaidyanathan, R. and El-Halwagi, M. M. (1994a). Global optimization of nonconvex nonlinear programs via interval analysis . Comput. Chem. Eng., 18 (10), 889–897.

    Article  CAS  Google Scholar 

  81. Vaidyanathan, R and El-Halwagi, M. M. (1994b). Computer-aided design of high performance polymers. J. of Elastomers and Plastics, 26,277–293.

    Article  CAS  Google Scholar 

  82. Vaidyanathan, R. and El-Halwagi, M. M. (1996a). Global optimization of nonconvex MINLP’s by interval analysis. In “Global Optimization in Engineering Design,” (I. E. Grossmann, ed.), pp. 175–194. Springer Science+Business Media Dordrecht, Dordrecht, The Netherlands.

    Google Scholar 

  83. Vaidyanathan, R and El-Halwagi, M. M. (1996b). Computer-Aided synthesis of polymers and blends with target properties. Ind. Eng. Chem. Res., 35, 627–634.

    Article  CAS  Google Scholar 

  84. Venkatasubramanian, V., Chan, K., and Cauthers, J. M. (1994). Computer-aided molecular design using genetic algorithms. Comp. Chem. Eng., 18, 833–844.

    Article  CAS  Google Scholar 

  85. Visweswaran, V. and Floudas, C. A. (1990). A global optimization procedure for certain classes of nonconvex NLP’s--II. application of theory and test problems“Comput. Chem. Eng., 14 (2), 1419–1434.

    Article  CAS  Google Scholar 

  86. Wahnschafft, O. M., Jurian, T. P., and Westerberg, A. W. (1991). SPLIT: A separation process designer. Comput. Chem. Eng., 15,565–581.

    Article  CAS  Google Scholar 

  87. Wang, Y. P., and Smith, R. (1994). Wastewater minimization. Chem. Eng. Sci. 49 (7), 981–1006.

    Article  CAS  Google Scholar 

  88. Warren, A., Srinivas, B. K., and El-Halwagi, M. M. (1995). Design of cost-effective waste-reduction systems for synthetic fuel plants.J. Environ. Eng. 121 (10), 742–747.

    Article  CAS  Google Scholar 

  89. Westerberg, A. W. (1987). Process synthesis: A morphological view. In “Recent Developments in Chemical Process and Plant Design,” (Y. A. Liu, H. A. McGee, Jr., and W. R. Epperly, eds). pp. 127–145. Wiley, New York.

    Google Scholar 

  90. Zhu, M., and El-Halwagi, M.M. (1995). Synthesis of flexible mass exchange networks.Chem. Eng. Commun.., 138,193–211.

    Article  CAS  Google Scholar 

  91. Zhu, M., El-Halwagi, M. M., and M. Alahmad (1997). Optimal design and scheduling of flexible reverse-osmosis networks.J. Membrane Sci. 129, 161–174.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

El-Halwagi, M.M. (1999). Sustainable Pollution Prevention Through Mass Integration. In: Sikdar, S.K., Diwekar, U. (eds) Tools and Methods for Pollution Prevention. NATO Science Series, vol 62. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4445-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4445-2_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5926-5

  • Online ISBN: 978-94-011-4445-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics