Skip to main content

Abstract

The need for the resin to flow over long distances through a preform of complex structure is unique to liquid composite moulding (LCM) in comparison with other composite manufacturing methods. However, an extensive literature on the general topic of flow through porous media exists and is helpful for understanding the effects of geometrical complexity on flow behaviour [13]. A brief summary of the salient points of the general literature will serve as an introduction to the historical problem of measuring the critical parameters required to characterise the flow of resins into a mould containing a preplaced reinforcement preform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Slattery, J.C. (1981) Momentum, Energy and Mass Transfer in Continua, Robert E. Kreiger Publishing, Huntington, NY.

    Google Scholar 

  2. Greenkorn, R.A. (1983) Flow Phenomena in Porous Media, Marcel Dekker, New York.

    Google Scholar 

  3. Adler, P.M. (1992) Porous Media, Butterworth-Heinemann, Boston, MA.

    Google Scholar 

  4. Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (1960) Transport Phenomena, John Wiley, New York.

    Google Scholar 

  5. Rudd, C.D., Middleton, V., Owen, M.J. et al. (1994) Modelling the processing and performance of preforms for liquid moulding processes. Composites Manufacturing, 5(3), 177–86.

    Article  Google Scholar 

  6. Dessenberger, R.B. and Tucker, C.L. (1995) Thermal dispersion in resin transfer molding. Polymer Composites, 16(6), 495–506.

    Article  CAS  Google Scholar 

  7. Carman, P.C. (1937) Fluid flow through granular beds. Transactions of the Institute of Chemical Engineers (London), 15, 150–66.

    CAS  Google Scholar 

  8. Lam, R.C. and Kardos, J.L. (1989) The permeability and compressibility of aligned and cross-plied carbon fiber beds during processing of composites. Annual Technical Conference of the Society of Plastics Engineers, May 1–4.

    Google Scholar 

  9. Phelan, F.R., Leung, Y. and Parnas, R.S. (1994) Modeling of microscale flow in unidirectional fibrous porous media. Journal of Thermoplastic Composite Materials, 7, 208–18.

    Article  Google Scholar 

  10. Sadiq, T.A.K., Advani, S.G. and Parnas, R.S. (1995) Experimental investigation of transverse flow through aligned cylinders. International Journal of Multiphase Flow, 21(5), 755–74.

    Article  CAS  Google Scholar 

  11. Parnas, R.S., Salem, A.J. Sadiq, T.A.K. et al. (1994) The interaction between micro-and macro-scopic flow in RTM preforms. Composite Structures, 27, 93–107.

    Article  Google Scholar 

  12. Parnas, R.S., Howard, J.G., Luce, T.L. and Advani, S.G. (1995) Permeability characterization: part 1. A proposed standard reference material for permeability. Polymer Composites, 16(6), 429–45.

    Article  CAS  Google Scholar 

  13. Parnas, R.S. and Salem, A.J. (1993) A comparison of the unidirectional and radial in-plane flow of fluids through woven composite reinforcements. Polymer Composites, 14(5), 383–94.

    Article  CAS  Google Scholar 

  14. Neale, G. and Nader, W. (1974) Practical significance of Brinkman’s extension of Darcÿ s law: coupled parallel flows within a channel and a bounding porous medium. Canadian Journal of Chemical Engineering, 52, 475–78.

    Article  Google Scholar 

  15. Parnas, R.S. and Cohen, Y. (1987) Coupled parallel flows of power-law fluids in a channel and a bounding porous medium. Chemical Engineering Communications, 53, 3–22.

    Article  CAS  Google Scholar 

  16. Gebart, B.R. (1992) Permeability of unidirectional reinforcements for RTM. Journal of Composite Materials, 26(8), 1100–33.

    Article  CAS  Google Scholar 

  17. Williams, J.G., Morris, C.E.M. and Ennis, B.C. (1974) Liquid flow through aligned fiber beds. Polymer Engineering Science, 14(6), 413–19.

    Article  CAS  Google Scholar 

  18. Miller, B. and Friedman, H.L. (1993) Evaluating in-plane absorption capabilities. The New Nonwovens World, 2(3), 83–88.

    Google Scholar 

  19. Patel, N. and Lee, L.J. (1996) Modeling of void formation and removal in liquid composite molding. Part I: wettability analysis. Polymer Composites, 17(1), 96–103.

    Article  CAS  Google Scholar 

  20. Ko, F.K. (1989) Three dimensional fabrics for composites, in Textile Structural Composites, Eds. T.W. Chou and F.K. Ko, Elsevier, Amsterdam, pp. 129–71.

    Google Scholar 

  21. Parnas, R.S. and Phelan, F.R. Jr (1991) The effect of heterogeneous porous media on mold filling in resin transfer molding. SAMPE Q,22, 53–60.

    CAS  Google Scholar 

  22. Rudd, C.D., Long, A.C., McGeehin, P. and Smith, P. (1996) In-plane permeability determination for simulation of liquid composite moulding of complex shapes. Polymer Composites, 17(1), 52–9.

    Article  CAS  Google Scholar 

  23. Friedman, H.L., Johnson, R.A., Miller, B. et al. (1995) In-plane movement of liquids through curved fabric structures. (I) Experimental approach. Proceedings of the ASME Materials Division, MD-Volume 69–1,pp. 817–40.

    Google Scholar 

  24. Adams, K.L., Russel, W.B. and Rebenfeld, L. (1988) Radial penetration of a viscous liquid into a planar anisotropic porous medium. International Journal of Multiphase Flow, 14(2), 203–15.

    Article  CAS  Google Scholar 

  25. Ahn, S.H., Lee, W.I. and Springer, G.S. (1995) Measurement of the three-dimensional permeability of fiber preforms using embedded fiber optic sensors. Journal of Composite Materials, 29(6), 714–33.

    Article  CAS  Google Scholar 

  26. Bréard, J., Saouab, A., Bouquet, G. et al. (1995) Experimental study of a three-dimensional resin flow through a fiber reinforcement material, in Proceedings of the International Conference on Composite Materials and Energy, Technomic Publishing Lancaster, PA, pp. 327–33.

    Google Scholar 

  27. Weitzenböck, J.R., Shenoi, R.A. and Wilson, P.A. (1995) Flow front measurement in RTM, in 4th International Conference on Automated Composites, The Institute of Materials, Nottingham, UK, pp. 307–14.

    Google Scholar 

  28. Gebart, B.R. and Lidström, P. (1996) Measurement of in-plane permeability of anisotropic fiber reinforcements. Polymer Composites, 17(1), 43–51.

    Article  CAS  Google Scholar 

  29. Ranganathan, S., Phelan, F.R. and Advani, S.G. (1996) A generalized model for the transverse permeability of unidirectional fibrous media. Polymer Composites, 17(2), 222–30.

    Article  CAS  Google Scholar 

  30. Martys, N.S., Torquato, S. and Bentz, D.P. (1994) Universal scaling of fluid permeability for sphere packings. Physics Reviews E, 50(1),403–8.

    Article  CAS  Google Scholar 

  31. Lidström, P. (1992) Measurement of in-plane permeability of anisotropic media. Swedish Institute of Composites SICOMP technical report 92–013, SICOMP, Pitea, Sweden.

    Google Scholar 

  32. Rudd, C.D., Morris, D.J., Chick J.P. and Warrior, N.A. (1995) Material characterization for SRIM, in 4th International Conference on Automated Composites ICAC ‘85, Volume 1, The Institute of Materials, Nottingham, UK, pp. 211–18.

    Google Scholar 

  33. Woerdeman, D.L., Phelan, F.R. and Parnas, R.S. (1995) Interpretation of 3-D permeability measurements for RTM Modeling. Polymer Composites, 16(6), 470–80.

    Article  CAS  Google Scholar 

  34. Luce, T.L., Advani, S.G., Howard, J.G. and Parnas, R.S. (1995) Permeability characterization, part 2. Flow behavior in multiple-layer preforms. Polymer Composites,16(6), 446–58.

    Article  CAS  Google Scholar 

  35. Nye, J.F. (1957) Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press, Oxford.

    Google Scholar 

  36. Cottle, R. W. (1974) Manifestation of the Schur complement, Linear Algebra and Applications,8, 189.

    Article  Google Scholar 

  37. Press, W.H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1986) Numerical Recipes, The Art of Scientific Computing, Cambridge University Press, Cambridge, MA.

    Google Scholar 

  38. Phelan, F.R. (1992) Flow simulation of the resin transfer molding process, in Proceedings of the American Society for Composites 7th Technical Conference, p. 90.

    Google Scholar 

  39. Han, K., Trevino, L., Lee L.J. and Liou, M. (1993) Fiber mat deformation in liquid composite molding. I: experimental analysis. Polymer Composites, 14(2), 144–50.

    Article  CAS  Google Scholar 

  40. Parnas, R.S., Schultheisz, C.R. and Ranganathan, S. (1996) Hydrodynamically induced preform deformation. Polymer Composites, 17(1), 4–10.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Parnas, R.S. (1998). Preform permeability. In: Kruckenberg, T.M., Paton, R. (eds) Resin Transfer Moulding for Aerospace Structures. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4437-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4437-7_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5906-0

  • Online ISBN: 978-94-011-4437-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics