Skip to main content

Data acquisition: monitoring resin position, reaction advancement and processing properties

  • Chapter

Abstract

The resin transfer moulding (RTM) process has been used in the past primarily for the production of lower performance composite structures. These structures typically have low fibre volumes and use relatively low-temperature matrices such as polyester resins. Advanced composite structures constructed with high-temperature resins require high fibre volumes with low void contents to be qualified for aircraft service [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hasko, G., Dexter, H., Loos, A. and Kranbeuhl, D. (1994) Application of science based RTM for fabricating primary aircraft structural elements. Journal of Advanced Materials, 26, 9–15.

    CAS  Google Scholar 

  2. Gutowski, T. G. (1986) Applications of the resin flow/fiber deformation model. 31st International SAMPE Symposium, Society for the Advancement of Materials and Process Engineering, 1161 Parkview Drive, Covina, CA 917243748, April, p 245–54.

    Google Scholar 

  3. Milovich, D. and Nelson, R. (1990) Dielectric resin flow sensing. SME Technical paper, March 6. Society of Manufacturing Engineers, SME Drive, PO Box 930, Dearborn, MI 48121.

    Google Scholar 

  4. Stark, E. (1987) New non-MDA epoxy resin systems for resin transfer molding (RTM) and filament winding. 32nd International SAMPE Symposium, Society for the Advancement of Materials and Process Engineering, 1161 Parkview Drive, Covina, CA 91724–3748, April 1987, pp. 1092–103.

    Google Scholar 

  5. Potter, K. (1987) Bismalemide formulations for resin transfer moulding. 32nd International SAMPE Symposium, Society for the Advancement of Materials and Process Engineering, 1161 Parkview Drive, Covina, CA 91724–3748, April, pp. 1–12.

    Google Scholar 

  6. Cirisciolo, G. Springer (1990) Smart Autoclave Cure, Technomic, Lancaster, PA.

    Google Scholar 

  7. Kranbuehl, D. (1986) Developments in Reinforced Plastics, Vol. 5, Elsevier Applied Science, New York, pp. 181–204.

    Book  Google Scholar 

  8. Kranbuehl, D. (1989) Encyclopedia of Composites, ed. S. M. Lee, VCH Publishers, New York, pp. 531–43.

    Google Scholar 

  9. Senturia, S. and Sheppard, S. (1986) Dielectric properties of bisphenol — A epoxy resins. Applied Polymer Science, 80, 1–48.

    Article  CAS  Google Scholar 

  10. May, C. (1983) Chemorheology of thermosetting resins. Polymer Materials Science and Engineering, ACS Symposium Series 227, American Chemical Society, Washington, DC.

    Google Scholar 

  11. Hedvig, P. (1977) Dielectric Spectroscopy of Polymers, John Wiley, New York.

    Google Scholar 

  12. Mijovic, J., Bellucci, F. and Nicolois, L. (1995) Impedance spectroscopy of reactive polymers, correlations with chemorheology during network formation. Electrochemical Society, 142(4), 1176–82.

    Article  CAS  Google Scholar 

  13. Mijovic, J. and Yee, C.F.W. (1994) Use of complex impedance to monitor the progress of reactions in epoxy/amine model systems. Macromolecules, 27, 7287–93.

    Article  CAS  Google Scholar 

  14. Bellucci, F., Valentino, M., Monetta, T. et al. (1995) Impedance spectroscopy of reactive polymers, 2. Multifunctional epoxy/amine formulations. Journal of Polymer Science Part B, Polymer Physics, 33, 433–43.

    Article  CAS  Google Scholar 

  15. Mangion, M.B.M. and Johari, G.P. (1990) Relaxations in thermosets. 7. Dielectric effects during the curing and post curing of an epoxide by mixed amines. Macromolecules,23, 3687–95.

    Article  CAS  Google Scholar 

  16. Mangion, M. and Johari, G. (1991) Relaxations in thermosets. IX ionic conductivity and gelation of DGEBA-based thermosets cured with pure and mixed amines. Journal of Polymer Science B, 29, 1117–25.

    Article  CAS  Google Scholar 

  17. Parthun, M.B. and Johari, G. (1992) Relaxations in thermosets: dielectric studies of curing kinetics of an epoxide with amines of varying chain lengths. Macromolecules, 25, 3254–63.

    Article  CAS  Google Scholar 

  18. Boiteux, G., Dublineau, P., Feve, M. et al. (1993) Irradiation effects of AC conductivity on organic solids. Polymer Bulletin, 30, 441–7.

    Article  CAS  Google Scholar 

  19. Mathieu, C., Boiteux G., Seytre, G. et al. (1994) Microdielectric analysis of the polymerization of an epoxy-amine system. Journal of Non-Crystalline Solids, 172–174, 1012–16.

    Article  CAS  Google Scholar 

  20. Xu, X. and Galiatsatos, V. (1993) Dielectric cure characterisation of model elastomers: influence of individual components. SPE Technical Papers (ANTEC ‘83), 39 2875.

    Google Scholar 

  21. Xu, X. and Galiatsatas, V. (1993) Dielectric cure characterisation of model elastomers. Macromolecules Symposium, 76, 137.

    Article  CAS  Google Scholar 

  22. Deng, Y. and Martin, G. (1994) Modeling diffusion during thermoset cure: an approach based on dielectric analysis. Macromolecules, 27, 5141–6.

    Article  CAS  Google Scholar 

  23. Companik, J. and Bidstrup, S. (1994) The viscosity and ion conductivity of polydimethylsiloxone system. 1. Chain length and ion size effecta. Polymer, 35, 4823–40.

    Article  CAS  Google Scholar 

  24. Tombari, E. and Johari, G.P. (1992) Dielectric relaxation spectroscopy of reaction controlled slowing of molecular diffusion in liquids. Journal of Chemical Physics, 97, 6677–86.

    Article  CAS  Google Scholar 

  25. Johari, G. P. and Pascheto, W. P. (1995) Molecular kinetics during the growth of the macromolecule poly(di-hydroxy propyl ether of bisphenol-A-n-hexylamine) studied by dielectric spectroscopy. Journal of the Chemical Society, Transactions, 91,343–51.

    CAS  Google Scholar 

  26. MacKinnon, A., Jenkins, S., McGrail, P. and Pethrick, R. (1992) A dielectric, mechanical, rheological, and electron microscopy study of cure and properties of a thermoplastic-modified epoxy resin. Macromolecules, 25, 3492–9.

    Article  CAS  Google Scholar 

  27. Maistros, G., Black, H., Bucknall, C. and Partridge, I. (1992) Dielectric monitoring of phase separation during cure of blends of epoxy resin with carboxylterminated poly (butadiene-co-acrylonitrile). Polymer, 33, 4470–8.

    Article  CAS  Google Scholar 

  28. Kranbuehl, D., Delos, S., Hoff, M. et al. (1987) Monitoring processing properties of high performance thermoplastics using frequency dependent electromagnetic sensing. Proceedings of the 32nd International SAMPE Symposium,Society for the Advancement of Materials and Process Engineering, pp. 338–48.

    Google Scholar 

  29. Kranbuehl, D. (1993) In situ measurement of cure latex coalescence and end-use properties in this film coating using frequency dependent impedance sensors. Polymer Materials Science and Engineering Preprints, 68, 224–5.

    CAS  Google Scholar 

  30. Kranbuehl, D. (1990) Dielectric cure monitoring. Polymer Materials Science and Engineering Preprints, 68, 289–90.

    Google Scholar 

  31. Kranbuehl, D., Kim, T., Liptak, S. C. and McGrath, J. E. (1993) In situ monitoring of phase inversion in a thermoplastic toughened thermoset. Polymer Preprints, 34, 488–9.

    CAS  Google Scholar 

  32. Maistros, G., Black, H., Bucknall, C. and Partridge, I. (1992) Dielectric monitoring of phase separation during cure of blends of epoxy resin with carboxylterminated poly(butadience-co-acrylonitrile). Polymer, 33, 4470–8.

    Article  CAS  Google Scholar 

  33. MacKinnon, A., Jenkins, S., McGrail, P. and Pethrick, R. (1992) A dielectric, mechanical, rheological, and electron microscopy study of cure and properties of a thermoplastic-modified epoxy resin. Macromolecules, 25,3492–9.

    Article  CAS  Google Scholar 

  34. MacRae, J. D. (1994) Development and verification of a resin film infusion/ resin transfer molding simulation model for fabrication of advanced textile composites. MS thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.

    Google Scholar 

  35. Hammond, V. H. (1993) Verification of a two-dimensional infiltration model for the resin transfer molding process. MS thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.

    Google Scholar 

  36. Kranbuehl, D. E., Kingsley, P., Loos, A.C. (1994) Insitu sensor monitoring and intelligent control of the resin transfer molding process. Polymer Composites, 15,299–305.

    Article  CAS  Google Scholar 

  37. Kranbuehl, D., Hood, D., Rogozinski, J., et al. (1995) In situ FDEMS sensing for intelligent automated cure in resin transfer molding of advanced architecture textile preforms. Proceedings of the 40th International SAMPE Symposium, Society for the Advancement of Materials and Process Engineering, 1161 Parkview Drive, Corvina, CA 91724–3748, pp. 1466–77.

    Google Scholar 

  38. Loos, A. C., MacRae, J., Hammond, V. et al. (1993) Analytical modeling and sensor monitoring for optimal processing of advanced textile structural composites by resin transfer molding infiltration. Society of Plastics Engineers, Technical Paper, XXXIX, pp. 3478–80.

    Google Scholar 

  39. Kranbuehl, D., Kingsley, P., Hart, S. et al. (1992) Sensor-model prediction, monitoring and in-situ control of liquid RTM advanced fiber architecture composite processing. Proceedings of the 37th International SAMPE Symposium,Society for the Advancement of Materials and Process Engineering, 1161 Parkview Drive, Corvina, CA 91724–3748, pp. 907–13.

    Google Scholar 

  40. Kranbuehl, D., Kingsley, P., Rhodenizer, H. et al. (1992) Society of Plastic Engineers, 38(2), 2049–51.

    Google Scholar 

  41. DekDyne Inc., 201 Harrison Avenue, Williamsburg, VA 23185, USA.

    Google Scholar 

  42. Hercules Corporation, Aerospace Materials, Bacchus Works, Magna, UT 84044.

    Google Scholar 

  43. Micromet Instruments Inc., 7 Wells Avenue, New Centre, MA 02159, USA.

    Google Scholar 

  44. Radius Engineering Inc., 3474 South 2300 East, Salt Lake City, UT 84109, USA.

    Google Scholar 

  45. Robit AS, PO Box 100, N-1361 Billingstad, Norway.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kranbuehl, D.E., Loos, A. (1998). Data acquisition: monitoring resin position, reaction advancement and processing properties. In: Kruckenberg, T.M., Paton, R. (eds) Resin Transfer Moulding for Aerospace Structures. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4437-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4437-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5906-0

  • Online ISBN: 978-94-011-4437-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics