Skip to main content

The Synthesis and Deposition of Storage Proteins: Possible Role of Molecular Chaperones and the Unfolded Protein Response

  • Chapter
Seed Proteins
  • 1521 Accesses

Abstract

The notion that proteins are capable of spontaneous folding and assembly is one that enjoyed several decades of support, only being queried with the discovery of a class of proteins which appeared to be involved in assisting polypeptide folding. These observations led to the now well known concept of molecular chaperones, in which proteins undergo assisted folding, usually mediated by a set of ATP-dependent reactions (reviewed in Ellis and van de Reis, 1991). It is also clear that these molecular chaperones are ubiquitous not only to organisms and cell types, but also to different subcellular compartments. The reason for this may be that chaperone proteins are also involved in promoting the translocation of polypeptides (or nascent chains) across the delineating membranes of organelles, such as plastids, mitochondria and the endoplasmic reticulum (ER). In the case of proteins crossing the ER and entering the secretory system, this event is usually a cotranslational process mediated by the signal recognition particle-targeted bound ribosomes which define the rough ER membrane. Within the lumen of the ER are a number of abundant chaperone proteins, the best characterized of these being binding protein (BiP), which was initially characterized on the basis of its interaction with heavy chain immunoglobulins (Haas and Wabl, 1983). Subsequent work in yeast (where the BiP homologue is encoded by the KAR2 gene) and mammalian systems have revealed that BiP is involved in polypeptide translocation and protein folding of a wide range of substrates (reviewed in Gething and Sambrook, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BiP:

binding protein

ER:

endoplasmic reticulum

UPR:

unfolded protein response

UPRE:

unfolded protein response element

References

  • Anderson, J. V., Li, Q.-B., Haskell, D.W. and Guy, C.L. (1994) Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat shock genes during cold acclimation. Plant Physiology 104, 1359–1370.

    Article  PubMed  CAS  Google Scholar 

  • Boston, R.S., Fontes, E.B.P., Shank, B.B. and Wrobel, R.L. (1991) Increased expression of the maize immunoglobulin binding protein homolog b-70 in 3 zein regulatory mutants. Plant Cell 3, 497–505.

    PubMed  CAS  Google Scholar 

  • Coleman, C. E., Clore, A. M., Ranch, J. P., Higgins, R., Lopes, M.A. and Larkins, B. A. (1997) Expression of a mutant alpha-zein creates the floury 2 phenotype in transgenic maize. Proceedings of the National Academy of Sciences USA 94, 7094–7097.

    Article  CAS  Google Scholar 

  • Coleman, C.E., Lopes, M. A., Gillikin, J. W., Boston, R. S. and Larkins, B. A. (1995) A defective signal peptide in the maize high-lysine mutant floury-2. Proceedings of the National Academy of Sciences USA 92, 6828–6831.

    Article  CAS  Google Scholar 

  • Cox, J.S., and Walter, P. (1996) A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87, 391–404.

    Article  PubMed  CAS  Google Scholar 

  • Cox, J.S., Chapman, R.E. and Walter, P. (1997) The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Molecular Biology of the Cell 8, 1805–1814.

    PubMed  CAS  Google Scholar 

  • Cox, J.S., Shamu, C.E. and Walter, P. (1993) Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73, 1197–1206.

    Article  PubMed  CAS  Google Scholar 

  • Craven, R.A., Egerton, M. and Stirling, C.J. (1996) A novel hsp70 of the yeast ER lumen is required for the efficient translocation of a number of protein precursors. EMBO Journal 15, 2640–2650.

    PubMed  CAS  Google Scholar 

  • D’Amico, L., Valsasina, B., Daminati, M. G., Fabbrini, M. S., Nitti, G., Bollini, R., Ceriotti, A. and Vitale, A. (1992) Bean homologs of the mammalian glucose-regulated proteins: induction by tunicamycin and interaction with newly synthesized seed storage proteins in the endoplasmic reticulum. Plant Journal 2, 443–455.

    PubMed  Google Scholar 

  • Denecke, J., Souza Goldman, M.H., Demolder, J., Seurinck, J. and Bottennan, J. (1991) The tobacco lumenal binding protein is encoded by a multigene family. Plant Cell 3, 1025–1035.

    PubMed  CAS  Google Scholar 

  • Denecke, J. (1996) Soluble endoplasmic reticulum resident proteins and their function in protein synthesis and transport. Plant Physiology and Biochemistry 34, 197–205.

    CAS  Google Scholar 

  • Ellis, R. J. and van der Vies, S. M. (1991) Molecular Chaperones. Annual Review of Biochemistry 60, 321–347.

    Article  PubMed  CAS  Google Scholar 

  • Galili, G. and Herman, E. M. (1997) Protein bodies: storage vacuoles in seeds. Advances in Botanical Research 25, 113–1140.

    Article  CAS  Google Scholar 

  • Gething, M.-J. and Sambrook, J. (1992) Protein folding in the cell. Nature 255, 33–45.

    Article  Google Scholar 

  • Gillikin, J. W., Zhang, F., Coleman, C. E., Bass, H. W., Larkins, B. A. and Boston, R.S. (1997) A defective signal peptide tethers the floury-2 zein to the endoplasmic reticulum membrane. Plant Physiology 114, 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Grimwade, B., Tatham, A. S., Freedman, R. B., Shewry, P. R. and Naper, J. A. (1996) Comparison of the expression patterns of genes coding for wheat gluten proteins and proteins involved in the secretory pathway of developing caryopses of wheat. Plant Molecular Biology 30, 1067–1073.

    Article  PubMed  CAS  Google Scholar 

  • Haas, I. G. and Wabl, M. (1983) Immunoglobulin heavy chain binding protein. Nature 306, 387–389

    Article  PubMed  CAS  Google Scholar 

  • Hammond, C. and Helemus, A. (1995) Quality control in the secretory pathway. Current Opinions in Cell Biology 7, 523–529.

    Article  CAS  Google Scholar 

  • Kalinski, A., Rowley, D. L., Loer, D. S., Foley, C., Buta, G. and Herman, E. M. (1995) Binding protein expression is subject to temporal, developmental and stress-induced regulation in terminally differentiated soybean organs. Planta 195, 611–621.

    Article  PubMed  CAS  Google Scholar 

  • Koch, C. and Nasmyth, K. (1994) Cell cycle regulated transcription in yeast. Current Opinions in Cell Biology 6, 451–459.

    Article  CAS  Google Scholar 

  • Lending, C. R. and Larkins, B. A. (1992) Effect of the floury-2 locus on protein body formation during maize endosperm development. Protoplasma 171, 123–133

    Article  Google Scholar 

  • Li, C. P. and Larkins, B. A. (1996) Expression of protein disulfide-isomerase is elevated in the endosperm of the maize floury-2 mutant. Plant Molecular Biology 30, 873–882.

    Article  PubMed  CAS  Google Scholar 

  • Li, X. X., Wu, Y.J., Zhang, D.Z., Gillikin, J.W., Boston, R. S., Franceschi, V. W. and Okita, T.W. (1993) Rice prolamine protein body biogenesis—a BiP-mediated process. Science 262, 1054–1056.

    Article  PubMed  CAS  Google Scholar 

  • Lopes, M.A., Coleman, C.E., Kodrzycki, R., Lending, C. R. and Larkins, B. A. (1994) Synthesis of an unusual alpha-zein protein is correlated with the phenotypic effects of the floury2 mutation in maize. Molecular and General. Genetics. 245, 537–547.

    PubMed  CAS  Google Scholar 

  • Mogelsvang, S. and Simpson, D. J. (1997) Changes in the levels of seven proteins involved in polypeptide folding and transport during endosperm developmcmnt of two barley genotypes differing in storage protein localisation. Plant Molecular Biology 36, 541–552.

    Article  Google Scholar 

  • Mori, K., Ma, W., Gething, M.-J. and Sambrook, J. (1993) A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signalling from the ER to the nucleus. Cell 74, 743–756.

    Article  PubMed  CAS  Google Scholar 

  • Mori, K., Sant, A., Kohno, K., Normington, K., Gething, M.-J. and Sambrook, J.F. (1992) A 22bp cis-acting element is necessary and sufficient for the induction of the yeast KAR2(BiP) gene by unfolded proteins. EMBO Journal 11, 2583–2593.

    PubMed  CAS  Google Scholar 

  • Muench, D.G., Wu, Y. J., Zhang, Y. S., Li, X. X., Boston, R. S. and Okita, T. W. (1997) Molecular cloning, expression and subcellular localization of a BiP homolog from rice endosperm tissue. Plant and Cell Physiology. 38, 404–412.

    Article  PubMed  CAS  Google Scholar 

  • Nikawa, J.I. and Yamashita, S. (1992) IRE1 encodes a putative protein kinase containing a membrane-spanning domain and is required for inositiol phototrophy in Saccharomyces cerevisiae. Molecular Microbiology 6, 1441–1446.

    Article  PubMed  CAS  Google Scholar 

  • Normington, K., Kohno, K., Kozutsumi, Y., Gething, M.-J. and Sambrook, J. (1989) S. cerevisiae encodes an essential protein homologous in sequence and function to mammalian BiP. Cell 57, 1223–1236.

    Article  PubMed  CAS  Google Scholar 

  • Pedrazzini, E., Giovinazzo, G., Bolllini, R., Ceriotti, A. and Vitale, A. (1994) Binding of BiP to an assembly-defective protein in plant cells. Plant Journal 5, 103–110.

    Article  CAS  Google Scholar 

  • Pedrazzini, E., Giovinazzo, G., Bielli, A., de Virgilo, M., Frigero, L., Pesca, M., Faoro, F., Bollini, R., Ceriotti, A. and Vitale, A. (1997) protein quality control along the route to the plant vacuole. Plant Cell 9, 1869–1880.

    PubMed  CAS  Google Scholar 

  • Shamu, C. E. and Walter, P. (1996) Oligomerization and phosphorylation of the IRE1 kinase during intracellular signalling from the endoplasmic reticulum to the nucleus. EMBO Journal 15, 3028–3039.

    PubMed  CAS  Google Scholar 

  • Shewry, P. R., Napier, J. A. and Tatham, A. S. (1995) Seed storage proteins: structure and biosynthesis. Plant Cell 7, 945–956.

    PubMed  CAS  Google Scholar 

  • Shorrosh, B. S. and Dixon, R. A. (1991) Molecular cloning of a putative plant endomembrane protein resembling vertebrate protein disulfide-isomerase and a phosphatidylinositol-specific phospholipase-c1. Proceedings of the National Academy of Sciences USA 88, 10941–10945.

    Article  CAS  Google Scholar 

  • Shorrosh, B. S. and Dixon, R. A. (1992) Sequence analysis and developmental expression of an alfalfa protein disulfide isomerase. Plant Molecular Biology 19, 319–321.

    Article  PubMed  CAS  Google Scholar 

  • Sidrauski, C. and Walter, P. (1997) The transmembrane kinase IRE1 is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90, 1031–1039.

    Article  PubMed  CAS  Google Scholar 

  • Sidrauski, C., Cox, J. S. and Walter, P. (1996) tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell 87, 405–413.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, C.B. (1997) Controlling the quality of secretory proteins in plants. Plant Cell 9, 1697–1699.

    CAS  Google Scholar 

  • Vitale, A., Bielli, A. and Ceriotti, A. (1995) The binding protein associates with monomeric phaseolin. Plant Physiology 107, 1411–1417.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter R. Shewry Rod Casey

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Napier, J.A. (1999). The Synthesis and Deposition of Storage Proteins: Possible Role of Molecular Chaperones and the Unfolded Protein Response. In: Shewry, P.R., Casey, R. (eds) Seed Proteins. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4431-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4431-5_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5904-6

  • Online ISBN: 978-94-011-4431-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics