Skip to main content

Fuzzy Logic, Control Engineering and Artificial Intelligence

  • Chapter

Part of the book series: International Series in Intelligent Technologies ((ISIT,volume 14))

Abstract

The term fuzzy logic is rather ambiguous because it refers to problems and methods that belong to different fields of investigation. When scanning the literature, it is possible to find three meanings for the expression fuzzy logic. In its most popular perception, it refers to numerical computations based on fuzzy rules, for the purpose of modeling a control law in systems engineering. However, in the mathematical literature, fuzzy logic means multiple-valued logics, with the purpose of modeling partial truth values and vagueness. Lastly, in Zadeh’s papers, fuzzy logic is better understood as fuzzy set-based methods for approximate reasoning at large, and approximate reasoning is a subtopic of Artificial Intelligence. This state of facts creates communication problems between researchers in the fuzzy set area and, consequently, outside the fuzzy world as well. Indeed the fields concerned with fuzzy logic, and that use this terminology, are Control Engineering, Formal Logic and Artificial Intelligence. Some of those fields almost never communicate with one another.

ArticleFootNote

L. Ughetto is currently with ENSAT, BP447, 22305, Lannion Cedex, France.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayel, M. and Rousset, M. (1990). La cohérence dans les bases de connaissances. Cépaduès Editions, Toulouse, France.

    Google Scholar 

  • Babuška, R., Jager, R., and Verbruggen, H. (1994). Interpolation issues in SugenoTakagi reasoning. In Proceedings of the 3rd IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’94), pages 859–863.

    Chapter  Google Scholar 

  • Benoit, E. and Foulloy, L. (1993). Capteurs flous multicomposants: Application à la reconnaissance. In Actes des 3èmes Journées Nationales sur les Applications des Ensembles Flous, EC2, Nanterre.

    Google Scholar 

  • Berenji, H. and Khedkar, P. (1992). Learning and tuning fuzzy logic controllers through reinforcements. IEEE Transactions on Neural Networks, 3:724–740.

    Article  Google Scholar 

  • Bersini, H. and Gorrini, V. (1994). Mlp, rbf, flc: What’s the difference. In Proeedings of the 2nd European Conference on Intelligent Techniques and Soft Computing (EUFIT’94),pages 19–26, Aachen, Germany. ELITE-Foundation.

    Google Scholar 

  • Braae, M. and Rutherford, D. (1979). Theoretical and linguistic aspects of the fuzzy logic controller. Automatica,15:15–30.

    Article  Google Scholar 

  • Buchanan, B. and Shortliffe, E. (1984). Rule-based expert systems — The MYCIN experiments of the Stanford Heuristic Programming Projects. Addison Wesley. Reading.

    Google Scholar 

  • Buckley, J. and Hayashi, Y. (1993). Fuzzy input-output controllers are universal approximators. Fuzzy Sets and Systems,58:273–278.

    Article  MathSciNet  MATH  Google Scholar 

  • Castro, J. (1995). Fuzzy logic controllers are universal approximators. IEEE Transactions on Systems, Man and Cybernetics,25:629–635.

    Article  Google Scholar 

  • Cayrol, M., Farreny, H., and Prade, H. (1982). Fuzzy pattern matching. Kybernetes,11:103–116.

    Article  Google Scholar 

  • Chanas, S. and Nowakowski, M. (1988). Single value simulation of a fuzzy variable. Fuzzy sets and Systems, 25:43–59.

    Article  MathSciNet  MATH  Google Scholar 

  • Chand, S. and Chiu, S., editors (1995). Special issue on fuzzy logic with engineering applications. Proceedings of the IEEE, 83(3).

    Google Scholar 

  • Denneberg, D. (1994). Non-Additive Measure and Integral. Kluwer Academic Publishers, Dordrecht.

    MATH  Google Scholar 

  • Dubois, D. and Gentil, S. (1994). Intelligence artificielle et automatique. Revue d’Intelligence Artificielle, 8(1):7–27.

    Google Scholar 

  • Dubois, D., Grabisch, M., and Prade, H. (1994). Gradual rules and the approximation of control laws. In H.T. Nguyen et al., editor, Theoretical Aspects of Fuzzy Control, pages 147–181. Wiley, New York.

    Google Scholar 

  • Dubois, D., Martin-Clouaire, R., and Prade, H. (1988a). Practical computing in fuzzy logic. In Gupta, M. and Yamakawa, T., editors, Fuzzy Computing - Theory, Hardware and Applications, pages 11–34. North-Holland, Amsterdam.

    Google Scholar 

  • Dubois, D. and Prade, H. (1980). Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York.

    MATH  Google Scholar 

  • Dubois, D. and Prade, H. (1985). Théorie des Possibilités -Applications à la Représentation des Connaissances en Informatique. Masson, Paris. with collaboration of H. Farreny, R. Martin-Clouaire and C. Testemale, 2ème édition 1987.

    Google Scholar 

  • Dubois, D. and Prade, H. (1987). The mean value of a fuzzy number. Fuzzy Sets and Systems, 24:279–30.

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois, D. and Prade, H. (1991). Fuzzy sets in approximate reasoning - part 1: Inference with possibility distributions. Fuzzy Sets and Systems, 40:143–202.

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois, D. and Prade, H. (1992a). Fuzzy rules in knowledge-based systems - modeling gradedness, uncertainty and preference. In Yager, R. and Zadeh, L., editors, An Introduction to Fuzzy Logic Applications in Intelligent Systems, pages 45–68. Kluwer Academic Publishers, Boston.

    Chapter  Google Scholar 

  • Dubois, D. and Prade, H. (1992b). Gradual inference rules in approximate reasoning. Information Sciences, 61:103–122.

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois, D. and Prade, H. (1994). On the validation of fuzzy knowledge bases. In Fuzzy Reasoning in Information, Decision and Control Systems, pages 31–49. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Dubois, D. and Prade, H. (1996a). Logique floue, interpolation et commande. J. Europ. Syst. Autom. (JESA), 30(5):607–644.

    Google Scholar 

  • Dubois, D. and Prade, H. (1996b). What are fuzzy rules and how to use them. Fuzzy sets and Systems, 84(2):169–186. Special issue in memory of Prof A. Kaufmann.

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois, D., Prade, H., and Sandri, S. (1993). On possibility/probability transformations. In Lowen, R. and Roubens, M., editors, Fuzzy Logic - State of the Art, pages 103–112. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Dubois, D., Prade, H., and Testemale, C. (1988b). Weighted fuzzy pattern-matching. Fuzzy sets and systems, 28(3):313–331.

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois, D., Prade, H., and Ughetto, L. (1997). Checking the coherence and redundancy of fuzzy knowledge bases. IEEE Transactins on Fuzzy systems, 5(3):398–417.

    Article  Google Scholar 

  • Efstathiou, J. (1995). Special issue on modern fuzzy control. Fuzzy Sets and Systems, 70(2–3).

    Google Scholar 

  • Farreny, H. and Prade, H. (1986). Dealing with the vagueness of natural languages in man-machine communication. In Karwowski, W. and Mital, A., editors, Applications of Fuzzy set Theory in Human Factors, pages 71–85. Elsevier, Amsterdam.

    Google Scholar 

  • Foulloy, L. (1994). Typologie des contrôleurs flous - La logique floue. Rapport ARAGO number 14, pages 80–107. OFTA, Masson, Paris.

    Google Scholar 

  • Galichet, S., Dussaud, M., and Foulloy, L. (1992). Contrôleurs flous: Equivalences et études comparatives. In Actes des 2èmes Journées Nationales sur les Applications des Ensembles Flous, Nîmes. EC2, Nanterre.

    Google Scholar 

  • Holmblad, L. and Østergaard, J. (1995). The FLS application of fuzzy logic. Fuzzy Sets and Systems,70:135–146.

    Article  Google Scholar 

  • Jager, R., Verbruggen, H., and Bruijn, P. (1994). Demystification of fuzzy control. In Tzafestas, S. and Venetsanopoulos, A., editors, Fuzzy Reasoning in Information, Decision and Control Systems, pages 165–197. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Jiang, J. and Sun, S. (1995). Neuro fuzzy modeling and control. Proceedings of the IEEE, 83:378–406.

    Article  Google Scholar 

  • Kacprzyk, J. and Fedrizzi, M., editors (1992). Fuzzy Regression Analysis Omnitech Press, Warsaw.

    MATH  Google Scholar 

  • Kaufmann, A. (1973). Introduction à la Théorie des Sous-Ensembles Flous. Masson, Paris.

    MATH  Google Scholar 

  • Kinkiélélé, D. (1994). Vérification de la cohérence des bases de connaissances floues. PhD thesis, Université de Savoie, Chambéry, France.

    Google Scholar 

  • Kóczy, L. and Hirota, K. (1993). Interpolative reasoning with insufficient evidence in sparse fuzzy rule bases. Information Sciences, 71:169–201.

    Article  MathSciNet  MATH  Google Scholar 

  • Kosko, B. (1991). Neural Networks and Fuzzy Systems. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Kosko, B. (1992). Fuzzy systems as universal approximators. In Proc. of the 1st IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’92),pages 1153–1162, San Diego, CA.

    Google Scholar 

  • Larsen, P. (1980). Industrial applications of fuzzy logic control. International Journal of Man-Machine Studies,12:3–10.

    Article  Google Scholar 

  • Lowen, R. (1990). A fuzzy Lagrange interpolation theorem. Fuzzy Sets and Systems, 34:33–38.

    Article  MathSciNet  MATH  Google Scholar 

  • Mamdani, E. and Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7:1–13.

    Article  MATH  Google Scholar 

  • Mendel, J. (1995). Fuzzy logic systems for engineering: A tutorial. Proceedings of the IEEE,83:345–377.

    Article  Google Scholar 

  • Nguyen, H., Sugeno, M., Tong, R., and Yager, R. (1995). Theoretical Aspects of Fuzzy Control. Wiley, New York.

    MATH  Google Scholar 

  • Palm, R. and Driankov, D. (1995). Fuzzy inputs. Fuzzy Sets and Systems, 70:315–336.

    Article  MathSciNet  Google Scholar 

  • Prade, H. (1988). Raisonner avec des règles d’inférence graduelle. Revue d’Intelligence Artificielle, 2(1):29–44.

    MathSciNet  Google Scholar 

  • Ruspini, E. (1969). A new approach to clustering. Information and Control, 15:22–32.

    Article  MATH  Google Scholar 

  • Schott, B. and Whalen, T. (1996). Nonmonotonicity and discretization error in fuzzy rule-based control using COA and MOM defuzzification. In Proceedings of the 5th IEEE Internatinal Conference on Fuzzy Systems (FUZZ-IEEE’96), pages 450–456.

    Google Scholar 

  • Sugeno, M. (1985). An introductory survey of fuzzy control. Information Sciences, 36:59–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man and Cybernetics, 15:116–132.

    Article  MATH  Google Scholar 

  • Ughetto, L., Dubois, D., and Prade, H. (1997). Efficient inference procedures with fuzzy inputs. In Proceedings of the 6th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’97), pages 567–572, Barcelona, Spain.

    Chapter  Google Scholar 

  • Wang, L. (1992). Fuzzy systems are universal approximators. In Proceedings of the 1st IEEE Internatinal Conference on Fuzzy Systems (FUZZ-IEEE’92),pages 1163–1169, San Diego, CA.

    Google Scholar 

  • Wang, L. and Mendel, J. (1992). Fuzzy basis functions, universal approximations and orthogonal least square learning. IEEE Transactions on Neural Networks,3:807–813.

    Article  Google Scholar 

  • WenstØp, F. (1976). Fuzzy set simulation models in a system dynamics perspectives. Kybernetes,6:209–218.

    Article  Google Scholar 

  • Yager, R. (1981). A procedure for ordering fuzzy subsets of the unit interval. Information sciences,24:143–161.

    Article  MathSciNet  MATH  Google Scholar 

  • Yager, R. and Filev, D. (1994). Essentials of Fuzzy Modeling and Control. John Wiley & Sons, New York.

    Google Scholar 

  • Yager, R., Ovchinnikov, S., Tong, R., and Nguyen, H. (1987). Fuzzy Sets and Applications: Selected Papers by L.A. Zadeh. John Wiley & Sons, New York.

    Google Scholar 

  • Zadeh, L. (1965). Fuzzy sets. Information and Control, 8:338–353.

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man and Cybernetics,3:28–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L. (1975). The concept of a linguistic variable and its application to approximate reasoning. Information Sciences. Part 1: 8:199–249; Part 2: 8:301–357; Part 3: 9:43–80.

    Google Scholar 

  • Zadeh, L. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems,1:3–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L. (1979). A theory of approximate reasoning. Machine Intelligence, 9:149–174. Elsevier, New York.

    Google Scholar 

  • Zadeh, L. (1996). Fuzzy logic = computing with words. IEEE Transactions on Fuzzy Systems, 4(2):103–111.

    Article  MathSciNet  Google Scholar 

  • Zimmermann, H. (1987). Fuzzy Sets, Decision Making, and Expert Systems. Kluwer Academic Publishers, Boston.

    Google Scholar 

  • Zurada, J., II, R. M., and Robinson, C. (1994). Computational Intelligence Imitating Life. IEEE Press, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dubois, D., Prade, H., Ughetto, L. (1999). Fuzzy Logic, Control Engineering and Artificial Intelligence. In: Verbruggen, H.B., Zimmermann, HJ., Babuška, R. (eds) Fuzzy Algorithms for Control. International Series in Intelligent Technologies, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4405-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4405-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5893-3

  • Online ISBN: 978-94-011-4405-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics