Skip to main content

Enhancing Flight Control using Fuzzy Logic

  • Chapter
Fuzzy Algorithms for Control

Abstract

An increasing amount of attention has been paid in recent years to the application of intelligent control methodologies in Aeronautical systems (Stengel, 1993; Steinberg, 1992). The integration of qualitative knowledge (heuristics) and quantitative knowledge (analytical models) through fuzzy modeling and control offers in particular many new possibilities. For example, the aggregation of human pilot heuristics and analytical aircraft models has yielded simple and transparent flight control designs (Chui and Chand, 1992; (Chand and Chui, 1991; Larkin, 1985; Steinberg, 1993). Besides aircraft, fuzzy controllers have been developed for helicopters (Jiang et al., 1996; Phillips et al., 1996; Sugeno et al., 1993) and spacecraft (Berenji et al., 1993; Schram et al., 1996b; Woodard, 1996). Fuzzy modeling on the other hand has been applied to the identification of control system failures (Laukonen and Passino, 1994; Kwong et al., 1994; Youssef et al., 1996) and to the modeling of the human pilot (KrishnaKumar et al., 1995). However, it may be wondered why fuzzy logic could play a role in the control of aircraft. The dynamics of the aircraft are well described by first principles modeling and, although of nonlinear nature, the adaptation of controllers to varying dynamics has been successfully applied in practice. Therefore (classical) control structures are found in all present-day, flight-by-wire control systems (McRuer et al., 1973; Tischler, 1996). This is however only possible when extensive design efforts are executed for the various circumstances to be expected. Moreover, unexpected situations such as changing weather conditions and system failures are difficult to model and thus difficult to translate into appropriate classical control designs. For these reasons, the application of fuzzy logic can be justified as will be explored in this Chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Athans, M. (1977). The stochastic control of the F-8C aircraft using a multiple model adaptive control (MMAC) method - part I: equilibrium flight. IEEE Transactions on Automatic Control, 22:768–780.

    Article  Google Scholar 

  • Aznar Fernández-Montesinos, M., Schram, G., Vingerhoeds, R. A., Verbruggen, H. B., and Mulder, J. A. (1997). Windshear recovery using fuzzy logic guidance and control. In AIAA Guidance Navigation and Control Conference, New Orleans, LA, USA. AIAA 97–3629.

    Google Scholar 

  • Babuška, R. and Verbruggen, H. B. (1996). An overview of fuzzy modeling for control. Control Engineering Practice, 4(11):1593–1606.

    Article  Google Scholar 

  • Berenji, H. R., Lea, R. N., Jani, Y., Khedar, P. S., Malkani, A., and Hoblit, J. (1993). Space shuttle attitude control by reinforcement learning and fuzzy logic. In 2nd IEEE Conference on Fuzzy Systems, pages 1396–1401, San Fransisco, CA, USA.

    Google Scholar 

  • Bowles, R. L. (1990). Windshear detection and avoidance: airborne systems survey. In 29th Conference on Decision and Control, pages 708–736, Honolulu, Hawaii, USA.

    Google Scholar 

  • Chand, S. and Chui, S. (1991). Robustness analysis of fuzzy control systems with application to aircraft roll control. In AIM Guidance Navigation and Control Conference, AIAA 91–2799.

    Google Scholar 

  • Chui, S. and Chand, S. (1992). Fuzzy controller design and stability analysis for an aircraft model. In American Control Conference, pages 821–826.

    Google Scholar 

  • DGAC Portugal, McDonnell Douglas Corporation DC-10–30F, and Martinair (1994). Final report on the accident occuring at Faro Airport - Portugal on 21 December 1992. Technical report.

    Google Scholar 

  • Driankov, D., Hellendoorn, H., and Reinfrank, M. (1993). An Introduction to Fuzzy Control. Springer Verlag.

    MATH  Google Scholar 

  • Frank, P. M. (1990). Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy - A survey and some new results. Automatica, 26(3):459–474.

    Article  MATH  Google Scholar 

  • Fujita, T. T. (1980). Downbursts and microbursts - an aviation hazard. In 19th Conference on Radar Meteorology, pages 94–101, Honolulu, Hawaii, USA. American Meteorology Society.

    Google Scholar 

  • Garcia-Cerezo, A. and 011ero, A. (1992). Stability of fuzzy control systems by using nonlinear system theory. In Preprints IFAC Symposium on Artificial Intelligence in Real-Time Control, pages 171–176.

    Google Scholar 

  • GARTEUR (1997). Robust Flight Control, A Design Challenge. R.F. Magni, S. Bennani, J. Terlouw (editors). Lecture Notes in Control and Information Sciences 224. Springer Verlag.

    Google Scholar 

  • Hinton, D. A. (1992). Forward-look wind-shear detection for microburst recovery. Journal of Aircraft, 29(1):63–66.

    Article  Google Scholar 

  • Jiang, T. Y., Prasad, J. V. R., and Calise, A. J. (1996). Adaptive fuzzy logic flight controllers for rotorcraft. In AIAA Guidance Navigation and Control Conference AIAA 96–3850, San Diego, CA, USA.

    Google Scholar 

  • KrishnaKumar, K., Gonsalves, P., Satyadas, A., and Zacharias, G. (1995). Hybrid fuzzy logic flight controller synthesis via pilot modeling. Journal of Guidance, Control, and Dynamics,18(5):1098–1105.

    Article  Google Scholar 

  • Kwong, W. A., Passino, K. M., and Yurkovich, S. (1994). Fuzzy learning systems for aircraft control law reconfiguration. In IEEE International Symposium on Intelligent Control, pages 333–338, Columbus, Ohio, USA.

    Google Scholar 

  • Lambregts, A. A. (1983). Vertical flight path and speed control autopilot design using total energy principles. Technical report, AIAA 83–2239.

    Google Scholar 

  • Larkin, L. I. (1985). A fuzzy controller for aircraft flight control. In Sugeno, M., editor, Industrial Applications of Fuzzy Control, pages 87–103. Elsevier Science Publishers B.V. (North-Holland).

    Google Scholar 

  • Laukonen, E. G. and Passino, K. M. (1994). Fuzzy systems for function approximation with application to failure estimation. In IEEE International Symposium on Intelligent Control, pages 184–189, Columbus, Ohio, USA.

    Google Scholar 

  • Lee, C. C. (1990). Fuzzy logic in control systems: fuzzy logic controller-part I and II. IEEE Transactions on Systems, Man, and Cybernetics, 20(2):404–435.

    Article  MATH  Google Scholar 

  • Mamdani, E. H. (1974). Applications of fuzzy algorithms for control of simple dynamic plant. Proceedings IEE, (121):1585–1588.

    Google Scholar 

  • Maybeck, P. S. and Stevens, R. D. (1991). Reconfigurable flight control via multiple model adaptive control methods. IEEE Transactions on Aerospace and Electronic Systems, 27(3):470–480.

    Article  Google Scholar 

  • McRuer, D. T., Ashkenas, I. L., and Graham, D. C. (1973). Aircraft Dynamics and Automatic Control. Princeton University Press.

    Google Scholar 

  • NTSB (1979). National Transportation Safety Board Final reportAAR-79/17 on American Airlines, Inc., DC-10–10 accident, N110AA, Chicago-O’Hare International Airport, Chicago, Illinois, May 25, 1979. Technical report.

    Google Scholar 

  • NTSB (1995). National Transportation Safety Board Final report AAR-95/03 on McDonnell Douglas DC-9–31 N954VJ, USAIR accident at Charlotte Airport, USA, July 2, 1994. Technical report.

    Google Scholar 

  • Oseguera, R. M. and Bowles, R. L. (1988). A simple, analytic 3- dimensional downburst model based on boundary layer stagnation flow. Technical report, NASA Technical Memorandum.

    Google Scholar 

  • Phillips, C., Karr, C. L., and Walker, G. (1996). Helicopter flight control with fuzzy logic and genetic algorithms. Engineering Applications of Artificial Intelligence, 9(2):175–184.

    Article  Google Scholar 

  • RLD (1994). Netherlands Aviation Safety Board aircraft Accident Report 92–11, El Al Flight 1862, Boeing 747–258F 4X-AXG, Bijlmermeer, Amsterdam, October 4, 1992. Technical report.

    Google Scholar 

  • Schram, G., Copinga, G. J. C., Bruijn, P. M., and Verbruggen, H. B. (1998a). Failure-tolerant control of aircraft; a fuzzy logic approach. In American Control Conference, pages 2281–2285, Philadelphia, USA.

    Google Scholar 

  • Schram, G., Gopisetty, S. M., and Stengel, R. E (1998b). A fuzzy logic — parity space approach to actuator failure detection and identification. In AIM Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. AIAA 98–1014.

    Google Scholar 

  • Schram, G., IJff, J. M., Krijgsman, A. J., and Verbruggen, H. B. (1996a). Fuzzy logic control of aircraft; a straightforward mimo design. In AIM Guidance Navigation and Control Conference, San Diego, CA, USA. AIAA 96–3847.

    Google Scholar 

  • Schram, G., van Buijtenen, W. M., Babugka, R., and Verbruggen, H. B. (1996b). Neurofuzzy control of satellite by reinforcement learning. In Computational Engineering in Systems Applications MultiConference (CESA-96), pages 1056–1060, Lille, France.

    Google Scholar 

  • Schram, G. and Verbruggen, H. B. (1997). RCAM: A fuzzy control approach. In Magni, J. F., Bennani, S., and Terlouw, J., editors, Robust Flight Control, A Design Challenge,Lecture Notes in Control and Information Sciences Series 224, pages 397–416. Springer Verlag.

    Chapter  Google Scholar 

  • Schram, G., Verschoor, B., Sousa, J. M., and Verbruggen, H. B. (1997). Flight control reconfiguration using multiple fuzzy controllers. In Sixth IEEE International Conference on Fuzzy Systems, pages 111–117, Barcelona, Spain.

    Google Scholar 

  • Shifrin, C. A. (1996). Aviation safety takes center stage worldwide. Aviation Week & Space Technology,pages 46–48.

    Google Scholar 

  • Steinberg, M. (1992). Potential role of neural networks and fuzzy logic in flight control design and development. In AIM Aerospace Design Conference, AIAA 92–0999, Irvine, CA, USA.

    Google Scholar 

  • Steinberg, M. (1993). Development and simulation of an f/a-18 fuzzy logic automatic carrier landing system. In 2nd IEEE Conference on Fuzzy Systems, pages 797–802, San Fransisco, CA, USA.

    Google Scholar 

  • Stengel, R. F. (1991). Intelligent failure-tolerant control. IEEE Control Systems, 11(4):14–23.

    Article  Google Scholar 

  • Stengel, R. F. (1993). Towards intelligent flight control. IEEE transactions on Systems, Man, and Cybernetics, 23(6):1699–1717.

    Article  Google Scholar 

  • Stratton, D. A. and Stengel, R. F. (1995). Real-time decision aiding: Aircraft guidance for wind shear avoidance. IEEE transactions on Aerospace and Electronic Systems, 31(1):117–124.

    Article  Google Scholar 

  • Sugeno, M., Griffin, M. F., and Bastian, A. (1993). A fuzzy hierarchical control of an unmanned helicopter. In IEEE 3rd Conference of Fuzzy Systems, Korea.

    Google Scholar 

  • Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its application to modeling and control. IEEE transactions on Systems, man, and Cybernetics, 15(1):116–132.

    Article  MATH  Google Scholar 

  • Tischler, M. B. (1996). Advances in Aircraft Flight Control. Taylor & Francis.

    Google Scholar 

  • Woodard, M. (1996). Fuzzy open-loop attitude control for the fast spacecraft. In AIAA Guidance Navigation and Contml Conference, AIAA 96–3892, San Diego, CA, USA.

    Google Scholar 

  • Youssef, H., Chiang, C. Y., and Yu, G. R. (1996). On-line LQG-fuzzy approach to failure detection, isolation, and reconfiguration of control surfaces. In AIM Guidance Navigation and Control Conference, AIAA 96–3799, San Diego, CA, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schram, G., Fernández-Montesinos, M.A., Verbruggen, H.B. (1999). Enhancing Flight Control using Fuzzy Logic. In: Verbruggen, H.B., Zimmermann, HJ., Babuška, R. (eds) Fuzzy Algorithms for Control. International Series in Intelligent Technologies, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4405-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4405-6_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5893-3

  • Online ISBN: 978-94-011-4405-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics