Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 233))

Abstract

Recent studies suggest that oxidative stress plays a significant role in the pathogenesis of atherosclerosis. This process serves as the basis for the oxidative-modification hypothesis of atherosclerosis. Several risk factors for atherothrombotic disease, such as hypercholesterolemia, hypertension, diabetes mellitus, cigarette smoking, and hyperhomocyst(e)inemia, promote oxidative reactions in the vasculature. Oxidant stress damages LDL, attracts and activates leukocytes, and stimulates platelets. In order to combat factors promoting oxidative stress, mammals have evolved several antioxidant defenses to limit oxidant injury. These defenses, which include water-soluble antioxidants (e.g., glutathione, ascorbate), lipid soluble antioxidants (e.g., α-tocopherol), and antioxidant enzymes (e.g., glutathione peroxidases) in the vasculature and extracellular space, frequently fail to afford adequate protection from the oxidative reactions that accompany atherogenesis. The antioxidant hypothesis derives from this limitation of endogenous antioxidant defenses, and posits that inadequate endogenous antioxidants promote, and antioxidant supplemementation prevents, atherothrombotis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stampfer MJ, Hennekens CH, Manson JE, et al. Vitamin E consumption and the risk of coronary disease in women. N End J Med 1993;328:1444–9.

    CAS  Google Scholar 

  2. Gaziano JM, Manson JE, Ridker PM, Buring JE, Hennekens CH. Beta carotene therapy for chronic stable angina. Circulation 1990;82:Suppl III-202.

    Google Scholar 

  3. Stephens NG, Parsons A, Schofield PM, et al. Randomized controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study. Lancet 1996;347:781–6.

    Article  PubMed  CAS  Google Scholar 

  4. Yusuf S, Dagenasis G, Pogue, J, et al. Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigation. N Engl J Med 2000;342:154–60.

    Article  PubMed  CAS  Google Scholar 

  5. Haber F. Weiss JJ. The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond 1934;147:332–52.

    Article  CAS  Google Scholar 

  6. Fenton HJH. Oxidation of tartaric acid in the presence of iron. J Chem Soc Trans 1894; 65: 899–910.

    Article  CAS  Google Scholar 

  7. Beckman JS, Beckman JW, Cheri J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990;87:1620–4.

    Article  PubMed  CAS  Google Scholar 

  8. Maddipati KR, Gasparski C, Marnett LJ. Characterization of the hydroperoxide-reducing activity of human plasma. Arch Biochem Biophys 1987;254:9–17.

    Article  PubMed  CAS  Google Scholar 

  9. Freedman JE, Frei B, Welch GN, Loscalzo J. Glutathione peroxidase potentiates the inhibition of platelet function by S-nitrosothiels. J Clin Invest 1995;96:394–400.

    Article  PubMed  CAS  Google Scholar 

  10. Freedman JE, Loscalzo J, Benoit SE, Valeri CR, Barnard MR, Michelson AD. Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis. J Clin Invest 1996;97:979–87.

    Article  PubMed  CAS  Google Scholar 

  11. Forgione M, Stucchi A, Cloutier T, et al. Increased oxidative stress in mice lacking the glutathione peroxidase and cystathionine G3-synthase genes. FASEB J 1999;13:A368.

    Google Scholar 

  12. Patrono C, FitzGerald GA. Isoprostanes: potential markers of oxidant stress in atherothrombotic disease. Atheroscler Thromb Vasc Biol 1997;17:2309–15.

    Article  CAS  Google Scholar 

  13. Frei, B. Natural Antioxidants in Human Health and Disease. 1st ed. New York: Academic Press 1994, p. 306.

    Google Scholar 

  14. Esterbauer H, Jurgens G, Quehenberger O, Koller E. Autoxidation of human low-density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. J Lipid Res 1987; 28:495–509.

    PubMed  CAS  Google Scholar 

  15. Frei, B. Natural Antioxidants in Human Health and Disease. 1st Ed., New York, N.Y. Academic Press 1994, p. 307.

    Google Scholar 

  16. Parthasarathy S, Auge N, Santanam N. Implications of lag time concept in the oxidation of LDL. Free Rad Res 1998;28:583–91.

    Article  CAS  Google Scholar 

  17. Steinberg D. Low-density lipoprotein oxidation and its pathobiological significance. J Biol Chem 1997;272:20963–6.

    Article  PubMed  CAS  Google Scholar 

  18. Steinbrecher UP. Oxidation of human low-density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem 1987;262:3603–8.

    PubMed  CAS  Google Scholar 

  19. Haberland ME, Fong D, Cheng L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science 1988;241:215–8.

    Article  PubMed  CAS  Google Scholar 

  20. Beppu M, Fukata Y, Kikugawa K. Interaction of malondialdehyde-modified bovine serum albumin and mouse peritoneal macrophages. Chem Pharm Bull 1988;36:4519–26.

    Article  PubMed  CAS  Google Scholar 

  21. Martens JS, Lougheed M, Gomez-Munoz A, Steinbrecher UP. A modification of apolipoprotein B accounts for most of the induction of macrophage growth by oxidized low-density lipoprotein. J Biol Chem 1999;274:10903–10.

    Article  PubMed  CAS  Google Scholar 

  22. Chapman MJ, Huby T, Nigon F, Thillet J. Lipoprotein(a): implication in atherothrombosis. Atherosclerosis 1994;110:S69–S75.

    Article  PubMed  CAS  Google Scholar 

  23. Napoli C, D’Armiento FP, Mancini FP, et al. Removal of mild oxidized lipoprotein (a) by rat hepatic Kupffer cells. Circulation 1996;94 (Suppl II):104.

    Google Scholar 

  24. Henriksen T, Mahoney EM, Steinberg D. Interactions of plasma lipoproteins with endothelial cells. Ann NY Acad Sci 1982;401:102–16.

    Article  PubMed  CAS  Google Scholar 

  25. Quinn MT, Parthasarathy S, Fong LG, Steinberg D. Oxidatively modified low-density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci USA 1987;84:2995–8.

    Article  PubMed  CAS  Google Scholar 

  26. Thomas CE, Jackson RL, Ohlweiler DF, Ku J. Multiple lipid oxidation products in LDL induce interleukin1 ß release from human blood mononuclear cells. J Lipid Res 1994;35;417–27.

    PubMed  CAS  Google Scholar 

  27. Devaraj D, Li D, Jialal I. The effects of a-tocopherol supplementation on monocyte function. Decreased lipid oxidation, interleukin-I beta secretion, and monocyte adhesion to endothelium. J Clin Invest 1996;98:756–63.

    Article  PubMed  CAS  Google Scholar 

  28. Faruqui R, de la Motte C, DiCorleto PE. Alpha-tocopherol inhibits agonist-induced monocytic cell adhesion to cultured human endothelial cells. J Clin Invest 1994;94:592–600.

    Article  Google Scholar 

  29. Collins, T. Endothelial nuclear factor-KB and the initiation of the atherosclerotic lesion. Lab Invest 1993;68:499–508.

    PubMed  CAS  Google Scholar 

  30. Thurberg B, Collins T. The nuclear factor-KB/inhibitor of kappa B autoregulatory system and atherosclerosis. Current Opin Lipid 1998;9:387–96.

    Article  CAS  Google Scholar 

  31. Erl W, Weber C, Wardermann C, Weber PC. a-Tocopheryl succinate inhibits monocytic cell adhesion to endothelial cells by suppressing NF-x13 mobilization. Am J Physiol 1997;273:H634–H640.

    PubMed  CAS  Google Scholar 

  32. Carew TE, Schwenke DC, Steinberg D. Antiatherogenic effect of probucol unrelated to its hypercholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit LDL degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci USA 1987; 84:7725–9.

    Article  PubMed  CAS  Google Scholar 

  33. Boursier T, Sukhova G, Libby P. The nuclear factor-KB signaling pathway participates in dysregulation of vascular smooth muscle cells in vitro and in human atherosclerosis. J Biol Chem 1997;272:15817–24.

    Article  Google Scholar 

  34. Locher R, Weisser B, Mengden T, Brunner C, Vetter W. Lysolecithin action on vascular smooth muscle cells. Biochem Biophys Res Commun 1992;183:156–62.

    Article  PubMed  CAS  Google Scholar 

  35. Maillard LC. Action des acides sur les sucres: formation des melanoidines par voie methodique. C R Hebd Seances Acad Sci 1912;154:66–8.

    CAS  Google Scholar 

  36. McCance DR, Dyer DG, Dunn JA,et al. Maillard reaction products and their relation to complications in insulin-dependant diabetes mellitus. J Clin Invest 1993; 91;2470–8.

    Article  PubMed  CAS  Google Scholar 

  37. Hangaishi M, Taguchi J, Ikari Y, Umezu M. Advanced glycation end-products enhance the aggregation of human platelets in vitro. Circulation 1997;96(Suppl I):1–665.

    Google Scholar 

  38. Kirstein M, Brett J, Radoff S. Ogawa S, Stern D, Vlassara H. Advanced protein glycosylation induces transendothelial human monocyte chemotaxis and secretion of platelet-derived growth factor: role in vascular disease of diabetes and aging. Proc Natl Acad Sei USA 1990; 87: 9010–4.

    Article  CAS  Google Scholar 

  39. Davi G, Ciabattoni G, Consoli A, et al. In vivo formation of 8-iso-prostaglandin F2,, and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation 1999;99:224–9.

    Article  CAS  Google Scholar 

  40. Davi G, Gresele P, Violi F. et al. Diabetes mellitus, hypercholesterolemia, and hypertension but not vascular disease per se are associated with persistent platelet activation in vivo. Evidence derived from the study of peripheral arterial disease. Circulation 1997;96:69–75.

    Article  PubMed  CAS  Google Scholar 

  41. Stampfer MJ, Malinow MR, Willett WC, et al. A prospective study of plasma homocyst(e)ine and the risk of myocardial infarction in U.S. physicians. JAMA 1992;268:877–81.

    Article  PubMed  CAS  Google Scholar 

  42. Selhub J, Jaques PF, Bostom AG. et al. Association between plasma homocyst(e)ine concentrations and extracranial carotid artery stenosis. N Eng J Med 1995; 332:286–91.

    Article  CAS  Google Scholar 

  43. Stamler JS, Osborne JA, Jaraki O. et al. Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J Clin Invest 1993;91:308–18.

    Article  PubMed  CAS  Google Scholar 

  44. Welch GN, Upchurch GR Jr, Loscalzo J. Homocysteine, oxidative stress, and vascular disease. Hosp Pract 1997;32:81–92.

    CAS  Google Scholar 

  45. Upchurch GR Jr, Welch GW, Fabian AJ, et al. Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 1997;272:17012–7.

    Article  PubMed  CAS  Google Scholar 

  46. Alexander RW, Llerringer RA, Griendling KK. Pathogenesis of hypertension: vascular mechanisims, In: Braunwald E. ed. Atlas of Heart Diseases: Atherosclerosis-risk Factors and Treatment. Philadelphia, PA:Current Medicine;1995;4.l-4.16.

    Google Scholar 

  47. Alexander RW. Theodore Cooper Memorial Lecture. Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new perspective. Hypertension 1995;25:155–61.

    Article  PubMed  CAS  Google Scholar 

  48. Rajagopalan S, Kurz S, Munzel T, et al. Angiotensin 1I-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 1996;97:1916–23.

    Article  PubMed  CAS  Google Scholar 

  49. Parik T, Allikmets, K, Teesalu R, Zilmer, M. Oxidative stress and hyperinsulinaemia in essential hypertension: different facets of increased risk. J Hypertens 1996;14:407–10.

    Article  PubMed  CAS  Google Scholar 

  50. Marangon K, Herbeth B, Lecomte E, et al. Diet, antioxidant status, and smoking habits in French men. Am J Clin Nutr 1998;67:231–9.

    PubMed  CAS  Google Scholar 

  51. Mezzetti A, Lapenna D, Pierdomenico SD, et al. Vitamins EC, and lipid peroxidation in plasma and arterial tissue of smokers and non-smokers. Atherosclerosis 1995;112:91–9.

    Article  PubMed  CAS  Google Scholar 

  52. Reilly M, Delanty N, Lawson JA, FitzGerald GA. Modulation of oxidant stress in vivo in chronic cigarette smokers. Circulation 1996;94:19–25.

    Article  PubMed  CAS  Google Scholar 

  53. Srivastava KC. Vitamin E exerts antiaggregatory effects without inhibiting the enzymes of the arachidonic acid cascade in platelets. Prostaglandins Leukot Med 1986; 21:177–85.

    Article  PubMed  CAS  Google Scholar 

  54. Jandak J, Steiner M, Richardson PD. Alpha-tocopherol, an effective inhibitor of platelet adhesion. Blood 1989;73:141–9.

    PubMed  CAS  Google Scholar 

  55. Freedman, J, Farhat J, Loscalzo J, Keaney JF Jr. Alpha-tocopherol inhibits aggregation of human platelets by a protein kinase C-dependent mechanism. Circulation 1996;94:2434–40.

    Article  PubMed  CAS  Google Scholar 

  56. Laursen JB, Rajagopalan S, Galis Z, et al. Role of superoxide in angiotensin 11-induced but not catecholamine-induced hypertension. Circulation 1997;95:588–93.

    Article  PubMed  CAS  Google Scholar 

  57. Vita JA, and Keaney JF.Jr. Ultrasound assessment of endothelial vasomotor function. In: Diagnostics of Vascular Diseases Principles and Technology. Lanzer, P., and Lipton, M. (Eds.), Springer-Verlag, Heidelberg, Germany, 1997.

    Google Scholar 

  58. Levine G, Frei B, Koulouris SN, et al. Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 1996;93:1107–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Forgione, M., Loscalzo, J. (2000). The Antioxidant Hypothesis. In: Tardif, JC., Bourassa, M.G. (eds) Antioxidants and Cardiovascular Disease. Developments in Cardiovascular Medicine, vol 233. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4375-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4375-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5881-0

  • Online ISBN: 978-94-011-4375-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics