Skip to main content

Pathogenesis of Atherosclerosis

  • Chapter
  • 135 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 233))

Abstract

Atherosclerosis is the most prevalent disease of modern society. Coronary atherosclerosis and its thrombotic complications are responsible for over one half million deaths annually, and countless other complications, in North America alone. Coronary plaques appear early in ones life, by the end of the second decade asymptomatic atherosclerotic lesions are present in most people. As these lesions grow they may eventually limit blood flow to the myocardium resulting in chronic ischemic syndromes. If progression is rapid as in the case of plaque rupture accompanied by superimposed thrombosis an acute ischemic syndrome such as unstable angina, myocardial infarction, or sudden death may result from the sudden narrowing or occlusion of the artery [1,2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med. Parts 1 and 2, 1992;326,242–50,310–8.

    Google Scholar 

  2. Fuster V. Lewis A. Conner Memorial Lecture: Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation. 1994;90:2126–46.

    PubMed  CAS  Google Scholar 

  3. Davies MJ. A macro and micro view of coronary vascular insult in ischemic heart disease. Circulation. 1990;82:1138–46.

    Google Scholar 

  4. Falk E, Shah PK, Fuster V. Coronary plaque rupture. Circulation. 1995;92:657–71.

    PubMed  CAS  Google Scholar 

  5. Falk E. Why do plaques rupture? Circulation 1992;86(Suppl III):III30–III42.

    PubMed  CAS  Google Scholar 

  6. Rokitansky K. A manual of Pathological Anatomy. Vol. 4 (Day GE. Trans) London: Syndenham Society. 1852:271–3.

    Google Scholar 

  7. Virchow R. Gesammelte Abhandlungen zur Wissenschaftlichen Medicin. Frankfurt: Meidinger u. Sohn Co., 1856:458.

    Google Scholar 

  8. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362:801–9.

    PubMed  CAS  Google Scholar 

  9. Ross R. The pathogenesis of atherosclerosis-an update. N Engl J Med 1986;14:488–500.

    Google Scholar 

  10. Stary HC: Composition and classification of human atherosclerotic lesions. Virchows Archiv A Pathol Mat 1992;421:277–90.

    CAS  Google Scholar 

  11. Stary HC. The sequence of cell and matrix changes in atherosclerotic lesions of coronary arteries in the first forty years of life. Eur Heart J 1990;11 (Suppl E):3–9.

    PubMed  Google Scholar 

  12. Stary HC, Blankenhorn DH, Chandler AB, Glagov S, Insull W, Richardson M, et al. A definition of the intima of human arteries and its atherosclerosis-prone regions. Circulation 1992;85:391–405.

    PubMed  CAS  Google Scholar 

  13. Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W, Rosenfeld ME, Schaffer A, et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. Circulation 1994;89:2462–78.

    PubMed  CAS  Google Scholar 

  14. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, Rosenfeld ME, et al. A definition of advanced types of atherosclerotic lesions and a histologic classification of atherosclerosis. Circulation 1995;92.

    Google Scholar 

  15. Katz SS, Shipley GG, Small DM. Physical chemistry of the lipids of human atherosclerotic lesions. Demonstration of a lesion intermediate between fatty streaks and advanced plaques. J Clin Invest 1976;58:200–11.

    PubMed  CAS  Google Scholar 

  16. Richardson PD, Davies MJ, Born GVR. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 1989;2:941–4.

    PubMed  CAS  Google Scholar 

  17. Levesque MJ, Liepsch D, Moravec S, Nerem RM. Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta. Arteriosclerosis 1986;6:220–9.

    PubMed  CAS  Google Scholar 

  18. Reidy MA, Bowyer DE. Scanning electron microscopy of arteries: the morphology of aortic endothelium in hemodynamically stressed areas associated with branches. Atherosclerosis 1977;26:181–94.

    PubMed  CAS  Google Scholar 

  19. Glagov S, Zairns C, Giddens DP, Ku DN. Hemodynamics and atherosclerosis: insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med 1988;112:1018–31.

    PubMed  CAS  Google Scholar 

  20. Davies MJ, Woolf N, Rowles PM, Pepper J: Morphology of the endothelium over atherosclerotic plaques in human coronary arteries. Br Heart J 1988;60:459–64.

    PubMed  CAS  Google Scholar 

  21. Munro JM, Cotran RS. The pathogenesis of atherosclerosis: atherogenesis and inflammation. Lab Invest 1988;58:249–61.

    PubMed  CAS  Google Scholar 

  22. Cathcart MK, Morel DW, Chisolm GM. Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic. J Leuk Biol 1985;38:341–50.

    CAS  Google Scholar 

  23. Rosenfeld ME, Palinski W, Yia-Herttuala S, Carew TE. Macrophages, endothelial cells, and lipoprotein oxidation in the pathogenesis of atherosclerosis. Toxicol Pathol 1990;18:560–1.

    PubMed  CAS  Google Scholar 

  24. Steinberg D. Antioxidants and atherosclerosis. A current assessment. Circulation 1991;84:1420–5.

    PubMed  CAS  Google Scholar 

  25. Parthasarathy S, Printz DJ, Boyd D, Joy L, Steinberg D. Macrophage oxidation of LDL generates a modified form recognized by the scavenger receptor. Arteriosclerosis 1986;6:505–10.

    PubMed  CAS  Google Scholar 

  26. Morel DW, DiCorleto PE, Chisolm GM. Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis 1984;74:357–64.

    Google Scholar 

  27. Navab M, Hama SY, Nguyen TB, Fogelman AM. Monocyte adhesion and transmigration in atherosclerosis. Coron Art Dis 1994;5:198–204.

    CAS  Google Scholar 

  28. Guyton JR, Klemp KF. Development of the lipid-rich core in human atherosclerosis. Thromb Vasc Biol. 1996;16:4–11.

    CAS  Google Scholar 

  29. Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degeneration of acetylated low density lipoproteins producing massive cholesterol deposition. Proc Nat Acad Sci. USA 1979:76:333–7.

    PubMed  CAS  Google Scholar 

  30. Brown MS, Kovanen PT, Goldstein JL. Regulation of plasma cholesterol by lipoprotein receptors. Science 1976;212:628–38.

    Google Scholar 

  31. Berliner JA, Territo MC, Almada L, Carter A, Shafonsky E, Fogelman AM. Monocyte chemotactic factor produced by large vessel endothelial cells in vitro. Arteriosclerosis 1986;6:254–8.

    PubMed  CAS  Google Scholar 

  32. Stanley ER. The macrophage colony-stimulating factor CSF-I. Meth Enzym 1985. 1985;116:1039–45.

    Google Scholar 

  33. Norris DA, Clark RAF, Swigart LM, Huff JC, Weston WL, Howell SE. Fibronectin fragment(s) are chemotactic for human peripheral blood monocytes. J lmmunol. 1982;129:1612–8.

    CAS  Google Scholar 

  34. Rosenfeld ME, Khoo JC, Miller E, Parthasarathy S, Palinski W, Witztum JL. Macrophage-derived foam cells freshly isolated from rabbit atherosclerotic lesions degrade modified lipoproteins, promote oxidation of low density lipoproteins, and contain oxidation-specific lipid-protein adducts. J Clin Invest. 1990;87:90–9.

    Google Scholar 

  35. Libby P. Molecular bases of the acute coronary syndromes. Circulation. 1995 91:2844–50.

    PubMed  CAS  Google Scholar 

  36. Schwartz SM, Heinmark RL, Majesky MW. Developmental mechanisms underlying pathology of arteries. Physiol Rev 1990;70:1177–209.

    PubMed  CAS  Google Scholar 

  37. Thyberg J, Hedin U, Sjollund M, Palmberg L. Bottger BA. Regulation of differentiated properties and proliferation of arterial smooth muscle cells. Arteriosclerosis 1990;10:966–90

    PubMed  CAS  Google Scholar 

  38. Hansson GK. Immune and inflammatory mechanisms of monocyte recruitment and accumulation. Br Heart J 1993;69(Suppl):9-S29.

    Google Scholar 

  39. Chester AH. O’Neil GS, Moncada S, Tadjkarimi S, Yacoub MH. Low basal and stimulated release of nitric oxide in atherosclerotic epicardial coronary arteries. Lancet 1996;336:897–900.

    Google Scholar 

  40. Moise A, Lesperance J, Theroux P, Taeymans Y, Goulet C, Bourassa MG: Clinical and angiographie predictors of new total coronary occlusion in coronary artery disease: Analysis of 313 nonoperated patients. Am J Cardiol 1984;54:1176–81.

    PubMed  CAS  Google Scholar 

  41. Ambrose JA, Winters SL, Arora RR, Eng A, Riccio A, Gorlin R, Fuster V. Angiographie evolution of coronary artery morphology in unstable angina. J Am Coll Card 1988;12:56–62.

    CAS  Google Scholar 

  42. Giroud D, Li JM, Urban P, Meier B, Rutishauser W. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Am J Cardiol. 1992;69: 729–32.

    PubMed  CAS  Google Scholar 

  43. Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrows MT. Kahl FR, Santamore WP. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation. 1988;78:1157–66.

    PubMed  CAS  Google Scholar 

  44. Solberg LA, Strong JP. Risk factors and atherosclerotic lesions: a review of autopsy studies. Atherosclerosis. 1983;3:187–98.

    CAS  Google Scholar 

  45. Alderman EL, Corley SD, Fisher LD, et al. Five year angiographie follow-up of factors associated with progression of coronary artery disease in the Coronary Artery Surgery Study (CASS). J Am Coll Card 1993. 22:1141–54.

    CAS  Google Scholar 

  46. Constantinides P. Plaque fissures in human coronary thrombosis. J Atherosclerosis Research 1966;6:1–17.

    Google Scholar 

  47. Davies MJ, Thomas AC. Plaque fissuring-the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J;53:363–73.

    Google Scholar 

  48. Falk E. Plaque rupture with pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J 1983;50:127–34.

    PubMed  CAS  Google Scholar 

  49. Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J. 1993;69:377–81.

    PubMed  CAS  Google Scholar 

  50. Loree HM, Kamm RD, Stringfellow RG, Lee RT. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res. 1992;71:850–8.

    PubMed  CAS  Google Scholar 

  51. Hangartner JRW, Charleston AJ, Davies MJ, Thomas AC. Morphological characteristics of clinically significant coronary artery stenosis in stable angina. Br Heart J. 1986;56:501–8.

    PubMed  CAS  Google Scholar 

  52. Geng YJ, Libby P. Evidence for smooth muscle cell death via apoptosis in advanced human atherosclerotic lesions: Implications for plaque destabilization and rupture. Circulation 1995;(Suppl 1):I-101.

    Google Scholar 

  53. Isner JM, Kearney M, Bortman S, Passeri J. Apoptosis in human atherosclerosis and restenosis. Circulation 1995 91:2703–11.

    PubMed  CAS  Google Scholar 

  54. Lee RT, Grodzinsky AJ, Frank EH, Kamm RD, Schoen FJ. Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation. 1991;83: 1764–70.

    PubMed  CAS  Google Scholar 

  55. Lendon CL, Davies MJ, Born GVR, Richardson PD. Atherosclerotic plaque caps are locally weakened when macrophage density is increased. Atherosclerosis. 1991;87:87–90.

    PubMed  CAS  Google Scholar 

  56. van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation. 1994;89:36–44.

    PubMed  Google Scholar 

  57. Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndromes: implications for plaque rupture. Circulation. 1994;90:775–8.

    PubMed  CAS  Google Scholar 

  58. Guyton JR, Black BI, Seidel CL. Focal toxicity of oxysterols in vascular smooth muscle cell culture. A model of the atherosclerotic core region. Am J Pathol 1990;137:425–34.

    PubMed  CAS  Google Scholar 

  59. Matrisian LM. The matrix degrading metalloproteinases. Bioessays. 1992:14:455–63.

    PubMed  CAS  Google Scholar 

  60. Shah PK, Falk E, Badimon JJ, Fernandez-Ortiz A, Mailhac A, Levy G, Fallon JT, Regnstrom J, Fuster V. Human monocyte derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques: potential role of matrix degrading metalloproteinases and implications for plaque rupture. Circulation. 1995;91:657–71.

    Google Scholar 

  61. Henney AM, Wakeley PR, Davies MJ, Foster K, Hembry R, Murphy G, Humphries S. Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proc Natl Acad Sci USA. 1991;88:8154–8.

    PubMed  CAS  Google Scholar 

  62. Rennick RE, Ling KLE, Humphries SE, Flenney AM. Effect of acetyl-LDL on monocyte/macrophage expression of matrix metalloproteinases. Atheroscierosis. 1994:109(Suppl):192. Abstract.

    Google Scholar 

  63. Kaartinen M, Penttil5 A, Kovanen PT. Accumulation of activated mast cells in the shoulder region of human coronary atheroma, the predilection site of atheromatous rupture. Circulation. 1994;90: 1669–78.

    PubMed  CAS  Google Scholar 

  64. Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis. 1986;6:131–8.

    PubMed  CAS  Google Scholar 

  65. Weiss S.I. Tissue destruction by neutrophils. N Engi J Med. 1989; 320:365–76.

    CAS  Google Scholar 

  66. Tofler GH, Stone PH, Maclure M, Edelman E, Davis VG, Robertson T, Antman EM, Muller JE, and the MILLS Study Group. Analysis of possible triggers of acute myocardial infarction (the MILLS Study). Am J Cardiol. 1990:66:22–7.

    PubMed  CAS  Google Scholar 

  67. Muller JE, Toiler GH, Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation. 1989;79: 733–43.

    PubMed  CAS  Google Scholar 

  68. Maclsaac AI, Thomas JD, Topol EJ. Toward the quiescent plaque. J Am Coll Cardiol 1993;22:1228–41.

    Google Scholar 

  69. Loree HM, Tobias BJ, Gibson U, Kamm RD, Small DM, Lee RT. Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler Thromb. 1994;14:230–4.

    PubMed  CAS  Google Scholar 

  70. Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions: a structural analysis with histopathological correlation. Circulation. 1993:87:1179–87.

    PubMed  CAS  Google Scholar 

  71. Aoki T, Ku DN. Collapse of diseased arteries with eccentric cross section. J Biomech. 1993;26:133–42.

    PubMed  CAS  Google Scholar 

  72. Mizushige K, Reisman M, Buchbinder M, Dittrich H, DeMaria AN. Atheroma deformation during the cardiac cycle: evaluation by intracoronary ultrasound. Circulation. 1993;88(Suppl 1):I-550. Abstract.

    Google Scholar 

  73. Stein PD, Hamid MS, Shivkumar K, Davis TP, Khaja F, Henry JW. Effects of cyclic flexion of coronary arteries on progression of atherosclerosis. Am J Cardiol. 1994;73:431–7.

    PubMed  CAS  Google Scholar 

  74. Rubanyi GM, Romero JC, Vanhoutte PM. Flow induced release of endothelium-derived relaxing factors. Am J Physiol 1986;250: H1145–9.

    PubMed  CAS  Google Scholar 

  75. Gertz SD, Uretzky G, Wajnberg RS, Navot N, Gotsman MS. Endothelial cell damage and thrombus formation after partial arterial constriction: relevance to the role of coronary artery spasm in the pathogenesis of myocardial infarction. Circulation. 1981;63:476–86.

    PubMed  CAS  Google Scholar 

  76. Fernandez-Ortiz A, Badimon J, Falk E, Fuster V, Meyer B, Mailhac A, Weng D, Shah PK, Badimon L. Characterization of the relative thrombogenicity of atherosclerotic plaque components: implications for consequences of plaque rupture. J Am Coll Cardiol. 1994;23:1562–9.

    PubMed  CAS  Google Scholar 

  77. Wilcox JN, Smith KM, Schwartz SM, Gordon D. Localization of tissue factor in normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci USA. 1989;86:2839–43.

    PubMed  CAS  Google Scholar 

  78. Toschi V, Gallo R, Lettino M, Fallon JT, Fernandez-Ortiz A, Badimon L, Chesebro JH, Nemerson Y, Fuster V, Badimon JJ. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation 1997;95:594–9.

    PubMed  CAS  Google Scholar 

  79. Lassila R, Badimon JJ, Vallabhajosula S, Badimon L. Dynamic monitoring of platelet deposition on severely damaged vessel wall in flowing blood: effects of different stenosis on thrombus growth. Atherosclerosis 1990;10:306–15.

    CAS  Google Scholar 

  80. Badimon L, Badimon JJ, Turitto VT, Vallabhajosula S, Fuster V. Platelet thrombus formation on collagen type 1: a model of deep vessel injury: infliuence of blood rheology, von Willebrand factor, and blood coagulation. Circulation 1988;78:1432–42.

    Google Scholar 

  81. Badimon L, Badimon JJ. Mechanism of arterial thrombosis in nonparallel streamlines: platelet thrombi grow at the apex of stenotic severely injured vessel wall: experimental study in the pig model. J Clin Invest 1989;84:1134–44.

    PubMed  CAS  Google Scholar 

  82. Hjemdahl P, Chronos NA, Wilson DJ, Bouloux P, Goodall AH. Epinephrine sensitizes human platelets in vivo and in vitro as studied by fibrinogen binding and P-selectin expression. Arterioscler Thromb. 1994;14:77–84.

    PubMed  CAS  Google Scholar 

  83. Larson PT, Wallen NH, Hjemdahl P. Norepinephrine-induced human platelet activation in vivo is only partially counteracted by aspirin. Circulation 1994;89:1951–7.

    Google Scholar 

  84. Gelernt MD, Hochman JS. Acute myocardial infarction triggered by emotional stress. Am J Cardiol. 1992;69:1512–3.

    PubMed  CAS  Google Scholar 

  85. Willich SN, Linderer T, Wegscheider K, Leizorovicz A, Alamercery I, Schroder R, and the ISAM Study Group. Increased morning incidence of myocardial infarction in the ISAM Study: absence with prior P-adrenergic blockade. Circulation. 1989;80: 853–8.

    PubMed  CAS  Google Scholar 

  86. Meade TW, Dyer S. Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N Engl J Med 1987;317:1737.

    Google Scholar 

  87. Ehrly AM, Jung G. Circadian rhythm of human blood viscosity. Biorheology 1973;10:577–83.

    PubMed  CAS  Google Scholar 

  88. Ridker PM, Manson JE, Suring JE, Muller JE, Hennekens CH. Circadian variation of acute myocardial infarction and the effect of low-dose aspirin in a randomized trial of physicians. Circulation 1990;82:897–902.

    PubMed  CAS  Google Scholar 

  89. Hunt BJ. The relationship between abnormal hemostatic function and the progression of coronary artery disease. Curr Opin Cardiol 1990;5:758–65.

    Google Scholar 

  90. Loscalzo J. Lipoprotein (a): a unique risk factor for atherothrombotic disease. Arteriosclerosis 1990;10:672–9.

    PubMed  CAS  Google Scholar 

  91. Ridker PM, Hennekens CH, Stampfer MJ. A prospective study of lipoprotein (a) and the risk of myocardial infarction. JAMA 1993;270:2195–9.

    PubMed  CAS  Google Scholar 

  92. Vanhoutte PM, Shimokawa H. Endothelium-derived relaxing factor and coronary vasospasm. Circulation 1989;80:1–9.

    PubMed  CAS  Google Scholar 

  93. Lerman A, Webster WMI, Chesebro JH, Edwards WD, Wei C-M, Fuster V, Burnett JC. Circulating and tissue endothelin immunoreactivity in hypercholesterolemic pigs. Circulation 1993;88:2923–8.

    PubMed  CAS  Google Scholar 

  94. Bogaty P, Hackett D, Davies G, Maseri A. Vasoreactivity of the culprit lesion in unstable angina. Circulation. 1994;90:5–11.

    PubMed  CAS  Google Scholar 

  95. Leary T. Coronary spasm as a possible factor in producing sudden death. Am Heart J. 1934;10:33844.

    Google Scholar 

  96. Estuda H, Mizuno K, Arakawa K, Satomura K, Shibuya T, Isolima K. Angioscopy in variant angina: coronary artery spasm and intimal injury. Lancet 1993;342:1322–268.

    Google Scholar 

  97. Nobuyoshi M, Tanaka M, Nosaka H, Kimura T, Yokoi H, Hamasaki N, Kim K, Shindo T, Yimura K. Progression of coronary atherosclerosis: is coronary spasm related to progression? J Am Coll Cardiol. 1991;18:904–10.

    PubMed  CAS  Google Scholar 

  98. Falk E. Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation 1985;71:699–708.

    PubMed  CAS  Google Scholar 

  99. Davies MJ, Bland JM, Hangartner JRW, Angeline A, Thomas AC. Factors influencing the presence or absence of acute coronary artery thrombi in sudden ischaemic death. Eur Heart J. 1989;10: 203–8.

    PubMed  CAS  Google Scholar 

  100. Badimon L, Chesebro JH, Badimon JJ. Thrombus formation on ruptured atherosclerotic plaques and rethrombosis on evolving thrombi. Circulation I992;86(Suppl III):111–74–111–85.

    Google Scholar 

  101. Chesebro JH, Fuster V. Thrombosis in unstable angina. N Engl J Med 1992;327:192–4.

    PubMed  CAS  Google Scholar 

  102. Cohen M, Sherman W, Rentrop KP, Gorlin R. Determinants of collateral filling observed during sudden controlled coronary artery occlusion in human subjects. J Am Coll Cardiol 1989:13:297–303.

    PubMed  CAS  Google Scholar 

  103. Fuster V, Frye RL, Kenedy MA, Conolly DC, Mankin HT. The role of collateral circulation in various coronary syndromes. Circulation 1979;59:1137–44.

    PubMed  CAS  Google Scholar 

  104. Ambrose JA, Hjemdahl-Monsen CE. Borrico S, Gorlin R, Fuster V. Angiographie demonstration of a common link between unstable angina pectoris and non-Q-wave acute myocardial infarction. Am J Cardiol 1988:61:244–7.

    PubMed  CAS  Google Scholar 

  105. Ambrose JA, Alexopoulos P. Thrombolysis in unstable angina: will the beneficial effects of thrombolytic therapy in myocardial infarction apply to patients with unstable angina? J Am Coll Cardiol 1989;13:1666–7.

    PubMed  CAS  Google Scholar 

  106. De Wood MA, Stiffer WF, Simpson CS, et al. Coronary arteriographic findings soon after non-Q wave myocardial infarction. N Digl J Med 1986;315:417–23.

    Google Scholar 

  107. Sasayama S, Fujita M. Recent insights into coronary collateral circulation. Circulation 1992;85:1197–204.

    PubMed  CAS  Google Scholar 

  108. Brown G, Albers JJ, Fischer LD, et al. Regression of coronary artery disease as a result of intensive lipid lowering therapy in men with high levels of apolipoprotei B. N Engl J Med 1990;336:129–33.

    Google Scholar 

  109. Badimon JJ, Badimon L, Fuster V. Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. J Clin Invest. 1990;85:1234–41.

    PubMed  CAS  Google Scholar 

  110. Pfeffer MA, Braunwald E, on behalf of SAVE investigators. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 1992;327:669–77.

    PubMed  CAS  Google Scholar 

  111. The SOLVD investigators. Effects of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med. 1992;327:685–670.

    Google Scholar 

  112. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Effect of ramipril on mortality of survivors of acute myocardial infarction with clinical evidence of heart failure. Lancet 1993;342:821–8.

    Google Scholar 

  113. Powell JS, Clozel J-P, Muller RKM, et al. Inhibitors of angiotensin converting enzyme prevent myocardial proliferation after vascular injury. Science 1989;245:186–8.

    PubMed  CAS  Google Scholar 

  114. Faggiotto A, Polli A, Catapano AL. Antioxidants and coronary artery disease. Curr Opin Lipidol. 1998;9:541–9.

    PubMed  CAS  Google Scholar 

  115. Morel DW, DiCorleto PE, Chisolm GM. Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis 1984;4:357–64.

    PubMed  CAS  Google Scholar 

  116. Klatt P, Esterbauer H. Oxidative hypothesis of atherogenesis. J Cardiovascul Risk 1996;3:346–51.

    CAS  Google Scholar 

  117. Gokce N, Frei B. Basic research in antioxidant inhibition of steps in atherogenesis. J Cardiovascul Risk 1996;3:352–7.

    CAS  Google Scholar 

  118. Graziano JM. Antioxidant vitamins and coronary artery disease risk. Am J Med. 1994;97:3A-18–3A21.

    Google Scholar 

  119. Walldius G, Erikson U, Olsson AG, Bergstrand L, Hadell K, Johansson J, Kaijser L, Lassvik C, Molgaard J, Nilsson S, SchäferElinder L, Stenport G, Holme I. The effect of probucol on femoral atheroscierosis: the Probucol Quantitative Regression Swedish Trial (PQRST). Am J Cardiol. 1994;74:875–83.

    PubMed  CAS  Google Scholar 

  120. Nabulsi AA, Folsom AR, White A, Patsch W, Heiss G, Wu KK, Szklo M. Association of hormone replacement therapy in various cardiovascular risk factors in postmenopausal women. N Engl J Med. 1993;328:1070–5.

    Google Scholar 

  121. Mendelson ME, Karas RH. The protective effects of estrogen on the cardiovascular system. N Engl J Med 1999;340:1801–11.

    Google Scholar 

  122. Collins P, Rosano GMC, Jiang C, Lindsay D. Cardiovascular protection by estrogens — a calcium antagonist effect? Lancet 1993;341:264–1265.

    Google Scholar 

  123. Grady D, Rubin SM, Petitti DB, Fox CS, Black D, Ettinger B, Emster VL, Cummings SR. Hormone therapy to prevent disease and prolong life in post menopausal women. Ann Intern Med 1992;117:1016–37.

    PubMed  CAS  Google Scholar 

  124. Hulley S, Grady D, Bush T, Furberg C, Herrington D, Riggs B, Vittingoff E. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/Progestin Replacement Study (HERS) Research Group. JAMA 1998;280:605–13.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gallo, R., Fuster, V. (2000). Pathogenesis of Atherosclerosis. In: Tardif, JC., Bourassa, M.G. (eds) Antioxidants and Cardiovascular Disease. Developments in Cardiovascular Medicine, vol 233. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4375-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4375-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5881-0

  • Online ISBN: 978-94-011-4375-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics