Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 371))

Abstract

Lattice-Boltzmann methods are being increasingly used to solve problems in computational fluid dynamics. The combination of robustness and simplicity has made it the method of choice for problems involving fluid flow through geometrically complex structures. Progress in several areas is summarized in a recent review article [1]. In this paper I will focus on applications of the lattice-Boltzmann method to simulations of particle-fluid suspensions. Since the basic principles of the method have already been described [2, 3], the focus of this article will be a review of recent developments and a discussion of some of the fine points that arise in practical applications of the method. In particular I will contrast the accuracy and complexity of different solid-fluid boundary conditions, discuss the application of an external pressure gradient, and describe additional complications arising from particle motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Chen and G.D. Doolen, Ann. Rev. Fl. Mech. 30, 329 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  2. A. J. C. Ladd, J. Fluid Mech. 271, 285 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. A. J. C. Ladd, J. Fluid Mech. 27, 311 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  4. U. Frisch, B. Hasslacher, and Y. Pomeau, Phys. Rev. Lett. 56, 1505 (1986).

    Article  ADS  Google Scholar 

  5. A. Koponen, Simulations of Fluid Flow in Porous Media by Lattice-Gas and Lattice-Boltzmann Methods. PhD thesis, University of Jyväkylä, Finland, 1998.

    Google Scholar 

  6. U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J-P. Rivet, Complex Systems 1, 649 (1987).

    MathSciNet  MATH  Google Scholar 

  7. Y. H. Qian, D. d’Humières, and P. Lallemand, Europhys. Lett. 17, 479 (1992).

    Article  ADS  MATH  Google Scholar 

  8. F. Higuera, S. Succi, and R. Benzi, Europhys. Lett. 9, 345 (1989).

    Article  ADS  Google Scholar 

  9. M. A. Gallivan, D. R. Noble, J. G. Georgiadis, and R. O. Buckius, Int J. Numer. Meth. Fluids 25, 249 (1997).

    Article  MATH  Google Scholar 

  10. X. He, Q. Zou, L-S. Luo, and M. Dembo, J. Stat. Phys. 87, 115 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. I. Ginzbourg and P. M. Adler, J. Phys. II (France) 4, 191 (1994).

    Article  Google Scholar 

  12. J.P. Hansen, this volume, p1.

    Google Scholar 

  13. A. J. C. Ladd, Phys. Rev. Lett. 70, 1339 (1993).

    Article  ADS  Google Scholar 

  14. A. J. C. Ladd, H. Gang, J. X. Zhu, and D. A. Weitz, Phys. Rev. Lett. 74, 318 (1995).

    Article  ADS  Google Scholar 

  15. A. J. C. Ladd, H. Gang, J. X. Zhu, and D. A. Weitz, Phys. Rev. E 52, 6550 (1995).

    Article  ADS  Google Scholar 

  16. R. Cornubert, D. d’Humières, and C. D. Levermore, Physica D 47, 241 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. D. P. Ziegler, J. Stat. Phys. 71, 1171 (1995).

    Article  ADS  Google Scholar 

  18. A. J. C. Ladd and D. Frenkel, Phys. Fluids A 2, 1921 (1990).

    Article  ADS  Google Scholar 

  19. O. P. Behrend, Phys. Rev. E 52, 1164 (1995).

    Article  ADS  Google Scholar 

  20. J. A. Somers and P. C. Rem, in Shell Conference on Parallel Computing, G. A. van der Zee, ed., (Lecture Notes on Computer Science, 1988

    Google Scholar 

  21. A. J. C. Ladd and D. Frenkel, in Cellular Automata and Modeling of Complex Physical Systems, P. Manneville, N. Boccara, G. Y. Vichniac, and R. Bidaux, eds., (Springer-Verlag, Berlin, 1989).

    Google Scholar 

  22. M. A. van der Hoef, D. Prenkel, and A. J. C. Ladd, Phys. Rev. Lett. 67, 3459 (1991).

    Article  ADS  Google Scholar 

  23. P. A. Skordos, Phys. Rev. E 48, 4823 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  24. D. R. Noble, S. Y. Chen, J. G. Georgiadis, and R. O. Buckius, Phys. Fluids 7, 203 (1995).

    Article  ADS  MATH  Google Scholar 

  25. S. Chen, D. Martinez, and R. Mei, Phys. Fluids 8, 2527 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. I. Ginzbourg and D. d’Humières, J. Stat. Phys. 84, 927 (1996).

    Article  ADS  MATH  Google Scholar 

  27. L-S. Luo, Phys. Rev. Lett. 81, 1618 (1998).

    Article  ADS  Google Scholar 

  28. A. S. Sangani and A. Acrivos, Int. J. Multiphase Flow 8, 193 (1982).

    Article  MATH  Google Scholar 

  29. A. J. C. Ladd, M. E. Colvin, and D. Frenkel, Phys. Rev. Lett. 60, 975 (1988).

    Article  ADS  Google Scholar 

  30. C. K. Aidun and Y. N. Lu, J. Stat. Phys. 81, 49 (1995).

    Article  ADS  MATH  Google Scholar 

  31. C. K. Aidun, Y. N. Lu, and E. Ding, J. Fluid Mech. 373, 287 (1998).

    Article  ADS  MATH  Google Scholar 

  32. J. Feng, H. H. Hu, and D. D. Joseph, J. Fluid Mech. 261, 95 (1994).

    Article  ADS  MATH  Google Scholar 

  33. G. R. McNamara and G. Zanetti. Phys. Rev. Lett. 61, 2332 (1988).

    Google Scholar 

  34. C. P. Lowe, D. Frenkel, and A. J. Masters, J. Chem. Phys. 76, 1582 (1995).

    Article  ADS  Google Scholar 

  35. D. O. Martinez, W. H. Matthaes, S. Chen, and D. C. Montgomery, Phys. Fluids 6, 1285 (1994).

    Article  ADS  MATH  Google Scholar 

  36. S. Chen, Z. Wang, X. Shan, and G. D. Doolen, J. Stat. Phys 68, 379 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ladd, A.J.C. (2000). Lattice-Boltzmann Simulations of Hydrodynamically Interacting Particles. In: Karkheck, J. (eds) Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems. NATO Science Series, vol 371. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4365-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4365-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6554-9

  • Online ISBN: 978-94-011-4365-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics