Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 371))

  • 387 Accesses

Abstract

Some of the experimental techniques that have been applied in recent years to the problem of measuring grain position and motion in two- and three-dimensional granular flows are briefly reviewed. The so-called “spin tagging” technique in magnetic resonance imaging provides a direct measure of a single displacement component for a slice through a three-dimensional granular material. Positron emission particle tracking allows the position vector of a single particle to be measured with better time resolution than with MRI, though with lower accuracy. High speed imaging using a video camera provides valuable data in two-dimensional flows, allowing, for example, velocity distributions, self-diffusion coefficients, static structure factors and intermediate scattering functions to be calculated from direct observations of the particle motion. The techniques are illustrated by applications including rotating drum experiments, and convection and fluidization in vertically-vibrated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. M. Jaeger and S. R. Nagel, Science 255, 1523 (1992).

    Article  ADS  Google Scholar 

  2. P. Evesque, Contemp. Phys. 33, 245 (1992).

    Article  ADS  Google Scholar 

  3. P. Evesque and J. Rajchenbach, Phys. Rev. Lett. 62, 44 (1989).

    Article  ADS  Google Scholar 

  4. J.B. Knight, H.M. Jaeger, and S.R. Nagel, Phys. Rev. Lett. 70, 3728 (1993).

    Article  ADS  Google Scholar 

  5. J. Duran, T. Mazozi, E. Clement, and J. Rajchenbach, Phys. Rev. E 50, 5138 (1994).

    Article  ADS  Google Scholar 

  6. J. Duran, J. Rajchenbach, and E. Clement, Phys. Rev. Lett. 70, 2431 (1993).

    Article  ADS  Google Scholar 

  7. S. Douady, S. Fauve, and C. Larouche, Europhys. Lett. 8, 621 (1989).

    Article  ADS  Google Scholar 

  8. H.K. Pak and R.P. Behringer, Phys. Rev. Lett. 71, 1832 (1993).

    Article  ADS  Google Scholar 

  9. L. Axel and L. Dougherty, Radiology 171 841 (1989).

    Google Scholar 

  10. J.B. Knight, E.E. Ehrichs, V.Y. Kuperman, J.K. Flint, H.M. Jaeger, and S.R. Nagel, Phys. Rev. E 54, 5726 (1996).

    Article  ADS  Google Scholar 

  11. E.E. Ehrichs, H.M. Jaeger, G.S. Karczmar, J.B. Knight, V.Y. Kuperman, and S.R. Nagel, Science 267, 1632 (1995).

    Article  ADS  Google Scholar 

  12. D.J. Parker, A.E. Dijkstra, T.W. Martin, and J.P.K. Seville, Chem. Eng. Sci. 52, 2011 (1997).

    Article  Google Scholar 

  13. S. Warr, J.M. Huntley, and G.T.H. Jacques, Powder Technol. 81, 41 (1995).

    Article  Google Scholar 

  14. S. Warr, J.M Huntley, and G.T.H. Jacques, Phys. Rev. E. 52, 5583 (1995).

    Article  ADS  Google Scholar 

  15. C.S. Campbell, Ann. Rev. Fluid Mech. 22, 57 (1990).

    Article  ADS  Google Scholar 

  16. S.B. Savage, Adv. Appl. Mech. 24, 289 (1984).

    Article  MATH  Google Scholar 

  17. S. Luding, E. Clement, A. Blumen, J. Rajchenbach, and J. Duran, Phys. Rev. E 49, 1634 (1994).

    Article  ADS  Google Scholar 

  18. S. Luding, H.J. Herrmann, and A. Blumen, Phys. Rev. E 50, 3100 (1994).

    Article  ADS  Google Scholar 

  19. E. Clement and J. Rajchenbach, Europhys. Lett. 16, 133 (1991).

    Article  ADS  Google Scholar 

  20. W. Cooke, S. Warr, J.M. Huntley, and R.C. Ball, Phys. Rev. E 53, 2812 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Huntley, J.M., Wildman, R.D. (2000). Experimental Studies of Granular Flows. In: Karkheck, J. (eds) Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems. NATO Science Series, vol 371. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4365-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4365-3_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6554-9

  • Online ISBN: 978-94-011-4365-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics