Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 371))

  • 393 Accesses

Abstract

Inelastic (energy-dissipating) particles can collide an infinite number of times in finite time. This phenomenon, called inelastic collapse, is an extreme example of correlated collisions. Inelastic collapse is present in the ‘inelastic hard-sphere’ model of granular materials, where granular particles are modeled as identical spheres which interact only via instantaneous collisions. Unlike the classical hard-sphere fluid, collisions are inelastic, i.e. they dissipate energy. If two particles with relative velocity v collide, the component of the velocity along the line of centers is reduced by a factor r:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Bernu and R. Mazighi, J. Phys. A: Math. Gen. 23, 5745 (1990).

    Article  ADS  MATH  Google Scholar 

  2. S. McNamara and W.R. Young, Phys. Fluids A 4, 496 (1992).

    Article  ADS  Google Scholar 

  3. P. Constantin, E. L. Grossman and M. Mungan, Physica D 83, 409 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Benedetto and E. Caglioti, Physica D 132, 457 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. S. McNamara and W.R. Young, Phys. Rev. E 50, R28 (1994).

    Article  ADS  Google Scholar 

  6. T. Zhou and L. P. Kadanoff, Phys. Rev. E 54, 623 (1996).

    Article  ADS  Google Scholar 

  7. S. McNamara and W.R. Young, Phys. Rev. E 53, 5089 (1996).

    Article  ADS  Google Scholar 

  8. G. Kuwabara and K. Kono, Jap. J. of Appl. Phys. 26, 1230 (1987).

    Article  ADS  Google Scholar 

  9. T. Schwager and T. Pöschel, Phys. Rev. E 57, 650 (1998).

    Article  ADS  Google Scholar 

  10. F.G. Bridges, A. Hatzes and D.N.C. Lin, Nature 309, 333 (1984).

    Article  ADS  Google Scholar 

  11. D. Goldman, M.D. Shattuck, C. Bizon, W.D. McCormick, J.B. Swift and H.L. Swinney, Phys. Rev. E 57, 4831 (1998).

    Article  ADS  Google Scholar 

  12. S. Luding, E. Clément, A. Blumen, J. Rajchenbach and J. Duran, Phys. Rev. E 50, 4113 (1994).

    Article  ADS  Google Scholar 

  13. E. Falcon, C. Laroche, S. Fauve and C. Coste, Eur. Phys. J. B 5, 111 (1998).

    Article  ADS  Google Scholar 

  14. S. Luding and S. McNamara, Granular Matter 1, 111 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McNamara, S. (2000). Inelastic Collapse. In: Karkheck, J. (eds) Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems. NATO Science Series, vol 371. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4365-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4365-3_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6554-9

  • Online ISBN: 978-94-011-4365-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics