Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 371))

  • 390 Accesses

Abstract

I received two invitations to this meeting: in the first unofficial one I was asked to speak ”on the transport properties of dense gases”. This involves the generalization of the Boltzmann equation to higher densities, a topic on which I have worked for more than 35 years. Later, I also received an official invitation, in which I was asked to give a lecture of “a generalized character”. Although the first topic would be a natural and relatively easy one, since I have spoken on it often and thought about it a lot, the second one seemed much more difficult but irresistibly challenging, in allowing me to view Boltzmann’s work in the last century from the perspective of the end of this century. This seems at first sight to be a precarious undertaking for a research scientist, but, as I hope to make clear to you, there may be advantages to this. While the historian of science is able to place the work of a scientist of the past in the context of that of his contemporaries, the research scientist can place the work of that scientist in the context of present day research and, up to a point, identify with his difficulties and achievements in the past on the basis of his own experience in the present day. I embark then on my perilous self-imposed task in the hope of providing some new perspectives on Boltzmann and his work, which are, I hope, historically not too inaccurate as far as the past is concerned, and stimulating, if not provocative, as far as the future is concerned.

The author and editor are very grateful to the Accademia dei Lincei in Rome for giving their permission to republish this lecture, which was first published in issue 131 of the Atti Dei Convegni Lincei. That issue contains this and all other lectures presented at an International Conference “Boltzmann’s Legacy -150 Years After His Birth”, organized by the Accademia dei Lincei, 25-28 May, 1994, in Rome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Boltzmann, “Über die mechanische Bedentung des Zweiten Hauptsatzes der Wärmetheorie”, Wien. Ber. 53, 195–220 (1866); Wissenschaftliche Abhandlungen (W.A.), F. Hasenöhrl, ed., (Chelsea Publ. Co., New York, 1968) Band I, pp. 9-33.

    Google Scholar 

  2. L. Boltzmann, ”Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten Materiellen Punkten”, Wien. Ber. 58, 517–560 (1868); W.A. Band I, pp. 49-96; id., “Lösung eines mechanisches Problems”, Wien. Ber. 58, 1035-1044 (1868); W. A. Band I, p. 97.

    Google Scholar 

  3. See also, L. Boltzmann, Über das Wärmegleichgewicht van Gasen auf welche äuszere Kräfte wirken”, Wien. Ber. 72, 427–457 (1875); W.A. Band II, pp. 1-30.

    Google Scholar 

  4. L. Boltzmann, (a) “Über das Wärmegleichgewicht zwischen mehratomigen Gas-molekulen”, Wien. Ber. 63, 397–418 (1871); W.A. Band I, pp. 237-258; (b) id., “Einige allgemeine Sätze über Wärmegleichgewicht”, Wien. Ber. 63, 679-711 (1871); W.A. Band I, pp. 259-287; (c) id., “Analytischer Beweis des zweiten Hauptsatzes der mechanischen Wärmetheorie aus den Sätzen über das gleichgewicht der lebendigen Kraft”, Wien. Ber. 63, 712-732 (1871); W.A. Band I, pp. 288-308; (d) id., “Neuer Beweis zweier Sätze über das Wärmegleichgewicht unter mehratomigen Gasmolekülen”, Wien. Ber. 95, 153-164 (1887); W.A. Band III, pp. 272-282.

    Google Scholar 

  5. Of Boltzmann’s about 140 scientific papers around 18 deal with the Second Law and 16 deal with Maxwell’s equilibrium distribution function or both.

    Google Scholar 

  6. L. Boltzmann, “Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen”, Wien. Ber. 66, 275–370 (1872); W.A. Band I, pp. 316-402.

    MATH  Google Scholar 

  7. See ref. 6, W.A., Band I. p. 345.

    Google Scholar 

  8. L. Boltzmann, “Bemerkungen über einige Probleme der mechanischen Wärmetheorie”, Wien. Ber. 74, 62–100 (1877), section II; W.A. Band II, pp. 112-148, section II.

    Google Scholar 

  9. L. Boltzmann, “Entgegnung auf die Wärmetheoretischen Betrachtungen des Hrn. E. Zermelo”, Wied. Ann. 57, 778–784 (1896); W.A. Band III, pp. 567-578; (b) id. “Zu Hrn. Zermelos Abhandlung ‘Über die mechanische Erklärung irreversibler Vorgänge’”, Wied. Ann. 60, 392-398 (1897), W. A. Band III, pp. 579-586; (c) id. “Über einen mechanischen Satz Poincaré’s”, Wien. Ber. 106, 12-20 (1897); W. A. Band III, pp. 587-595.

    Google Scholar 

  10. (a) P. and T. Ehrenfest, “Begriffliche Grundlagen der statistischen Auffassung in der Mechanik”, Enzycl. d. Mathem. Wiss. IV, 2, II, Heft 6, 3-90 (1912), pp. 30–32 or in P. Ehrenfest, Collected Papers 213-309 (North-Holland, Amsterdam, 1959), pp. 240-242; (b) P. and T. Ehrenfest, The Conceptual Foundations of the Statistical Approach in Mechanics, M.J. Moravcsik, tr., (Cornell University Press, Ithaca, NY 1959), pp. 20-22.

    Google Scholar 

  11. The Energeticists wanted to explain all natural phenomena on the basis of energy alone, the most general “substance” present in the world. All phenomena were then continuous transformations of energy.

    Google Scholar 

  12. ” note well”.

    Google Scholar 

  13. A. J. Kox, “H. A. Lorentz’s Contributions to Kinetic Gas Theory”, Ann. Sci. 47, 591–606 (1990), p. 602.

    Article  MathSciNet  Google Scholar 

  14. A. J. Kox, l.c. p. 598.

    Google Scholar 

  15. L. Boltzmann, “Über die Beziehung swischen dem zweiten Hauptsatz der mechanischen Wäxmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über des Wärmegleichgewicht”, Wien. Ber. 76, 373–435 (1877); W. A. Band II, pp. 164-223.

    Google Scholar 

  16. Ref. 15, p. 164.

    Google Scholar 

  17. Cf. A. Einstein, “Autobiographical Notes” in Albert Einstein: Philosopher-Scientist, P. A. Schilp, ed., (The Library of Living Philosophers, Vol. VII, Evanston, IL, 1949), pp. 47-49. See also: B. Hoffman, Albert Einstein, Creator and Rebel, (New Amer. Libr., New York 1972) pp. 58-59.

    Google Scholar 

  18. See, e.g., E. G. D. Cohen, “Fifty Years of Kinetic Theory”, Physica A 194, 229–257 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  19. L. Boltzmann, Vorlesungen über Gastheorie, 2 vols (Barth, Leipzig, 1896, 1898); engl. transi, by S. G. Brush as Lectures on Gas Theory, (Univ. of Calif. Press, Berkeley, 1964).

    MATH  Google Scholar 

  20. L. Boltzmann, “Vorlesunger über Maxwell’s Elektrizitätstheorie” (Aus den Mitteilungen des naturwissenschaftlichen Vereins in Graz. August 1873.) in Populäre Schriften, 2nd ed., (Barth, Leipzig, 1919) pp. 11–24.

    Google Scholar 

  21. J. C. Maxwell, “On Faraday’s Lines of Force”, Trans. Cambr. Phil. Soc. 10, 27–83 (1856); Scientific Papers 1, (Cambridge, U. K., 1890), p. 155.

    Google Scholar 

  22. L. Boltzmann, “Über die Entwicklung der Methoden der theoretischen Physik in neuerer Zeit”, in Populäre Schriften, 2nd ed., (Barth, Leipzig, 1919) pp. 198–227.

    Google Scholar 

  23. Ref. 22, pp. 204-205.

    Google Scholar 

  24. Ref. 4b, pp. 259-260.

    Google Scholar 

  25. J. C. Maxwell, “On Boltzmann’s theorem on the average distribution of energy in a system of material points”, Cambr. Phil. Soc. Trans. 12, 547–575 (1879); Scientific Papers 2, (Cambridge, U. K., 1890), pp. 713-741. See also ref. 28, p. 123.

    Google Scholar 

  26. Ref. 25, p. 715.

    Google Scholar 

  27. See, e.g. M.J. Klein, “The Maxwell-Boltzmann Relationship”, in A.I.P. Conference Proceedings, Transport Phenomena, J. Kestin, ed., (Amer. Inst. Phys., New York, 1973) pp. 300–307.

    Google Scholar 

  28. L. Boltzmann, “Über die Eigenschaften monozyklischen und andere damit verwandter Systeme”, Zeitschr. f. R. u. Angew. Math (Crelles Journal) 98, 68–94 (1884); W. A. Band III, pp. 122-152. See also: G. Gallavotti, “Ergodicity, Ensembles and Irreversibilité’, J. Stat. Phys. 78, 1571-1589 (1995).

    Google Scholar 

  29. Ref. 28, p. 123, footnote 1.

    Google Scholar 

  30. Ref. 28, p. 122.

    Google Scholar 

  31. L. Boltzmann, “Über einige Fälle, wo die lebendige Kraft nicht integrierender Nenner des Differentials der zugeführten Energie ist”, Wien. Ber. 92, 853-875 (1885); W.A. Band III, pp. 153-175; (b) id., “Neuer Beweis eines von Helmholtz aufgestellten Theorems betreffende die Eigenschaften monozyclischen Systeme”, Gött. Nachr. 209-213 (1886); W.A. Band III, pp. 176-181.

    Google Scholar 

  32. See e.g.,L. Boltzmann, “Über die Unentbehrlichkeit der Atomistik in der Naturwissenschaften” in Populäre Schriften, 2nd ed., (Barth, Leipzig, 1919) pp. 141–157; (b) ref. 22, p. 216.

    Google Scholar 

  33. See ref. 28, p. 134.

    Google Scholar 

  34. See ref. 10a, p. 30, footnote 83; ref. 10b, p. 89, note 88.

    Google Scholar 

  35. G. D. Birkhoff, (a) “Proof of the Ergodic Theorem”, Proc. Nat. Acad. USA 17, 656–660 (1931); (b) id., “Probability and Physical Systems”, Bull. Amer. Math. Soc, 361-379 (1932); (c) G. D. Birkhoff and B. 0. Koopman, “Recent Contributions to the Ergodic Theory”, Proc. Nat. Acad. USA 18, 279-287 (1932) and (d) G. D. Birkhoff and P. A. Smith, “Structure Analysis of Surface Transformations”, J. Math. Pures Appl. 7, 345-379 (1928). See also: A. I. Khinchin, Mathematical Foundations of Statistical Mechanics, (Dover, New York, 1949) Ch. II, pp. 19-32; E. Hopf, Ergodentheoric, (Chelsea Publ. Co., New York, 1948).

    Article  ADS  Google Scholar 

  36. J. W. Gibbs, Elementary Principles in Statistical Mechanics, (Yale University Press, New Haven, 1902; also Dover Publications, New York, 1960).

    MATH  Google Scholar 

  37. Ref 36, pp. 42-45.

    Google Scholar 

  38. Ref 10a, pp. 53-70; 10b, pp. 44-63.

    Google Scholar 

  39. L. S. Ornstein, “Toepassing der Statistische Mechanica van Gibbs op Molekulair-Theoretische Vraagstukken”, Leiden (1908).

    Google Scholar 

  40. See e.g. J. P. Eckmann and D. Ruelle, “Ergodic Theory of Chaos and Strange Attractors”, Rev. Mod. Phys. 57, 617–656 (1985), p. 639.

    Google Scholar 

  41. J. C. Maxwell, “Tait’s Thermodynamics”, Nature 17, 257–259 (1878); The Scientific Papers of James Clerk Maxwell Vol. 2, (Dover Publ., New York, 1952), p. 669.

    Article  ADS  Google Scholar 

  42. D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids, (Academic Press, New York, 1990) p. 171.

    MATH  Google Scholar 

  43. D. J. Evans, E. G. D. Cohen, and G. P. Morriss, “Probability of Second Law Violations in Shearing Steady States”, Phys. Rev. Lett. 71, 2401–2404 (1993); id. 71, 3616 (1993).

    Article  ADS  MATH  Google Scholar 

  44. G. Gallavotti and E. G. D. Cohen, “Dynamical Ensembles in Nonequilibrium Statistical Mechanics”, Phys. Rev. Lett. 74, 2694–2697 (1995); ibid., “Dynamical Ensembles in Stationary States”, J. Stat. Phys. 80, 931-970 (1995).

    Article  ADS  Google Scholar 

  45. D. J. Evans, E. G. D. Cohen, and G. P. Morriss, “Viscosity of a simple fluid from its maximal Lyapunov exponents”, Phys. Rev. A 42, 5990–5997 (1990); See also: H. A. Posch and W. G. Hoover, “Lyapunov Instability of Dense Lennard-Jones Fluids”, Phys. Rev. A 38, 473-482 (1988); id., “Equilibrium and Nonequilibrium Lyapunov Spectra for Dense Fluids and Solids”, Phys. Rev. A 39, 2175-2188 (1989).

    Article  ADS  Google Scholar 

  46. P. Gaspard and G. Nicolis, “Transport Properties, Lyapunov Exponents and Entropy Per Unit Time”, Phys. Rev. Lett. 65, 1693–1696 (1990).

    Google Scholar 

  47. P. Cvitanovič, P. Gaspard, and T. Schreiber, “Investigation of the Lorentz Gas in Terms of Periodic Orbits”, Chaos 2, 85–90 (1992); (b) W. W. Vance, “Unstable Periodic Orbits and Transport Properties of Nonequilibrium Steady States”, Phys. Rev. Lett. 69, 1356-1359 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. G. Morriss and L. Rondoni, “Periodic Orbit Expansions for the Lorentz Gas”, J. Stat. Phys. 75, 553–584 (1994); (b) G. P. Morriss, L. Rondini, and E. G. D. Cohen, “A Dynamical Partition Function for the Lorentz Gas”, J. Stat. Phys. 80, 35-43 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  49. N. J. Chernov, G. L. Eyink, J. L. Lebowitz, and Ya. G. Sinai, “Derivation of Ohm’s Law in a Deterministic Mechanical Model”, Phys. Rev. Lett. 70, 2209–2212 (1993); id. “Steady State Electrical Conduction in the Periodic Lorentz Gas”, Comm. Math. Phys. 154, 569-601 (1993).

    Article  ADS  Google Scholar 

  50. Ref. 40, p. 636.

    Google Scholar 

  51. I am indebted for this suggestion to Prof. B. Knight of The Rockefeller University.

    Google Scholar 

  52. See, e.g., F. E. Manuel, A Portrait of Isaac Newton, (Harvard Univ. Press, Cambridge, MA 1968).

    Google Scholar 

  53. Exceptions are, e.g., M. J. Klein, Paul Ehrenfest, Vol. I, (North-Holland, Amsterdam, 1970); C. W. F. Everitt, “Maxwell’s Scientific Creativity,” in Springs of Scientific Creativity, R. Aris, H. T. Davis, and R. H. Stuewer, eds., (Univ. Minnesota Press, Minneapolis, MN 1983) Ch. 4, p. 71-141; M. Dresden, H. A. Kramers: Between Tradition and Revolution, (Springer Verlag, New York, 1987) and W. Moore, Schrödinger, (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  54. H. A. Lorentz, “Ludwig Boltzmann”, Commemoration oration at the meeting of the German Physical Society, 17 May 1907; Verhandl. Deutsch. Physik. Gesells. 12, 206–238 (1907); Collected Works, Vol. IX, p. 389.

    Google Scholar 

  55. Ref. 22, pp. 226, 227.

    Google Scholar 

  56. See e.g. L. Boltzmann, “Statistische Mechanik” in réf. 22, p. 358.

    Google Scholar 

  57. Ref. 22, p. 227: “O unbescheidener Sterbliche! Dein Los ist die Freude am Anblicke des wogenden Kampfes!”.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cohen, E.G.D. (2000). Boltzmann and Statistical Mechanics. In: Karkheck, J. (eds) Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems. NATO Science Series, vol 371. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4365-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4365-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6554-9

  • Online ISBN: 978-94-011-4365-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics