Model Analysis of Stratosphere-Troposphere Exchange of Ozone and Its Role in the Tropospheric Ozone Budget

  • G. J. Roelofs
  • J. Lelieveld
Part of the NATO Science Series book series (ASIC, volume 557)


Anthropogenic activities have changed the chemical composition of the atmosphere. It is generally accepted that tropospheric ozone (O3) has increased considerably during industrialization as a result of the photochemical transformation of anthropogenically emitted ozone precursors such as nitrogen oxides (NOx), methane (CH4), carbon monoxide (CO), and nonmethane hydrocarbons (NMHC) [1]. Analysis of measurement data from the second half of the last century reveals that typical ozone mixing ratios in Europe at the surface were between 10 and 15 parts per billion by volume (ppbv) [2,3]. At present, surface ozone mixing ratios over Europe are, on average, between 20 and 50 ppbv [4]. This indicates that anthropogenic activities have caused a boundary layer ozone increase of more than a factor of two, at least in Europe. Additionally, diffusive and convective transports cause exchange of air between the boundary layer and the free troposphere, carrying ozone and ozone precursors to higher altitudes. Comparison between historical and contemporary measurements carried out over the Alps (representative of continental background conditions), shows an ozone increase of about 20 ppbv at least up to about 4 km altitude [5]. Model calculations indicate that the tropospheric content of ozone has increased from about 190 Tg (1 Tg = 1012 g) in the preindustrial era to 270 Tg at present [6].


Ozone Concentration Potential Vorticity Stratospheric Ozone Tropospheric Ozone Lower Stratosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    World Meteorological Organization (1992) Scientific assessment of ozone depletion: 1991, Global ozone research and monitoring project. Rep. 25, Geneva, Switzerland.Google Scholar
  2. 2.
    Volz, A., and D. Kley (1988) Evaluation of the Montsouris series of ozone measurements made in the nineteenth century, Nature 332, 240–242.CrossRefGoogle Scholar
  3. 3.
    Marenco, A., Gouget, H., Nédélec, P., Pagés, J.P., and Karcher, F. (1994)Evidence of a long-term increase in tropospheric ozone from Pic du Midi data series - Consequences: Positive radiative forcing, J. Geophys. Res 9916617–16632.CrossRefGoogle Scholar
  4. 4.
    Oltmans, S.J., and Levy II, H. (1994) Surface ozone measurements from a global network, Atmos. Environ 289–24.CrossRefGoogle Scholar
  5. 5.
    Staehelin, J., Thudium, J., Buehler, R., Volz-Thomas, A., and Graber, W. (1994) Trends in surface ozone concentrations at Arosa (Switzerland), Atmos. Environ 28 75–87.CrossRefGoogle Scholar
  6. 6.
    Roelofs, G.J., Lelieveld, J., and van Dorland, R. (1997) A three-dimensional chemistry/general circulation model simulation of anthropogenically derived ozone in the troposphere and its radiative climate forcing, J. Geophys. Res 102 23389–23401.CrossRefGoogle Scholar
  7. 7.
    Crutzen, P.J. (1971) Ozone production rates in an oxygen-hydrogennitrogen oxide atmosphere, J. Geophys. Res 76, 7311–7327.CrossRefGoogle Scholar
  8. 8.
    Dunkerton, T. (1978) On the mean meridional mass motion of the stratosphere and the mesosphere, J. Atmos. Sci 35, 2325–2321.CrossRefGoogle Scholar
  9. 9.
    Holton, J.R., Haynes, P.H., McIntyre, M.E., Douglas, A.R., Rood, R.B. and Pfister, L. (1995) Stratosphere-troposphere exchangeRev. Geophys 33 403–439.CrossRefGoogle Scholar
  10. 10.
    Holton, J.R. and Lelieveld, J. (1996) Stratosphere-troposphere exchange and its role in the budget of tropospheric ozone, in P.J. Crutzen and V. Ramanathan (Eds.) Clouds,Chemisty and Climate NATO ASI Series, Springer-Verlag, Berlin, pp. 173–190.Google Scholar
  11. 11.
    Vaughan, G. (1988) Stratosphere-troposphere exchange of ozone, In: I.S.A. Isaksen (Ed.) Tropospheric ozoneD. Reidel, Dordrecht, pp. 125–135.CrossRefGoogle Scholar
  12. 12.
    Murphy, D.M., and Fahey, D.W. (1994) An estimate of the flux of stratospheric reactive nitrogen and ozone into the troposphere, J. Geophys. Res 99 5325–5332.CrossRefGoogle Scholar
  13. 13.
    Danielsen, E.F., and Mohnen, V.A. (1977) Project Dustorm report: Ozone transport, in situ measurements and meteorological analyses of tropopause folding, J. Geophys. Res 82 5867–5877.CrossRefGoogle Scholar
  14. 14.
    Ebel, A., Elbern, H., and Oberreuter, A. (1993) Stratosphere-troposphere air mass exchange and cross-tropopause fluxes of ozone, in E.V. Thane (Ed.)Coupling processes in the lower and middle atmosphere Kluwer, Dordrecht, pp. 49–65.CrossRefGoogle Scholar
  15. 15.
    Mahlman, J.D., Levy II, H. and Moxim, W.J.1980: Three-dimensional tracer structure and behaviour as simulated in two ozone-precursor experiments. J. Atmos. Sci 37, 655–685.CrossRefGoogle Scholar
  16. 16.
    Gidel, L.T., and Shapiro, M.A. (1980) General circulation model estimates of the net vertical flux of ozone in the lower stratosphere and the implications for the tropospheric ozone budget J. Geophys. Res 85 4049–4058.CrossRefGoogle Scholar
  17. 17.
    Levy II, H.. Mahlman, J.D., Moxim, W.J., and Liu, S.C. (1985) Tropospheric ozone: The role of transportJ. Geophys. Res 90, 3753–3772.CrossRefGoogle Scholar
  18. 18.
    Roelofs, G.J., and Lelieveld, J. (1997) Model study of the influence of cross-tropopause O3 transports on tropospheric O3 levelsTellus 49B.3855.Google Scholar
  19. 19.
    Ertel, H. (1942) Ein neuer hydrodynamischer WirbelsatzMeteorol. Z 59, 277–281.Google Scholar
  20. 20.
    Danielsen, E.F., Hipskind, R.S., Gaines, S.E., Sachse, G.W., Gregory, G.L., and Hill, G.F. (1987) Three-dimensional analysis of potential vorticity associated with tropopause folds and observed variations of ozone and carbon monoxide, J. Geophys. Res 92, 2103–2111.CrossRefGoogle Scholar
  21. 21.
    Marenco, A., et al. (1998) Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC airborne program, an overview, J. Geophys. Res 103, 25631–25642.CrossRefGoogle Scholar
  22. 22.
    Thouret, V., Marenco, A., Nédélec, P, and Grouhel, C. (1998) Ozone climatologies at 9–12 km altitude as seen by the MOZAIC airborne program between September 1994 and August 1996, J. Geophys. Res 103, 25653–25679.CrossRefGoogle Scholar
  23. 23.
    Beekmann, M., Ancellet, G., and Mégie, G. (1994) Climatology of tropospheric ozone in southern Europe and its relation to potential vorticity, J. Geophys. Res 99, 12841–12853.CrossRefGoogle Scholar
  24. 24.
    Rosenlof, K.H. (1995) The seasonal cycle of the residual mean meridional circulation in the stratosphere, J. Geophys. Res 100, 5173–5191.CrossRefGoogle Scholar
  25. 25.
    Brühl, C., Crutzen, P.J., and Grooss, J.U. (1998) High-latitude, summertime NOx activation and seasonal ozone decline in the lower stratosphere: Model calculations based on observations by HALOE on UARS, J. Geophys. Res 103, 3587–3597.CrossRefGoogle Scholar
  26. 26.
    Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M., Dörrenil, L., Esch, M., Giorgetta, M., Schlese, U., and Schuizweida U. (1996) The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate, Rep. 218, Max-PlanckInstitute for Meteorology, Hamburg, Germany.Google Scholar
  27. 27.
    Chen, C.T., and Roeckner, E. (1996) Validation of the earth radiation budget as simulated by the Max Planck Institute for Meteorology general circulation model ECHAM4 using satellite observations of the Earth Radiation Budget Experiment J. Geophys. Res 101.4269–4287.CrossRefGoogle Scholar
  28. 28.
    Roelofs, G.J. and Lelieveld, J. (1995) Distribution and budget of O3 in the troposphere calculated with a chemistry - general circulation model, J. Geophys. Res 100, 20983–20998.CrossRefGoogle Scholar
  29. 29.
    Gery, M., Whitten, G., Killus, J., and Dodge, M. (1989) A photochemical kinetics mechanism for urban and regional scale computer modeling, J. Geophys. Res 94 12925–12956.CrossRefGoogle Scholar
  30. 30.
    Carter, W.P. (1996) Condensed atmospheric photooxidation mechanisms for isoprene, Atmos. Environ 30 (24), 4275–4290.CrossRefGoogle Scholar
  31. 31.
    Brühl, C., and Crutzen, P.J. (1988) Scenarios of possible changes in atmospheric temperatures and ozone concentrations due to man’s activities, estimated with a one-dimensional coupled photochemical climate model, Climate Dynamics 2173–203.CrossRefGoogle Scholar
  32. 32.
    Roelofs, G.J. (1999) Dynamic parameterization of stratospheric ozone in the chemistry-ECHAM using MOZAIC data, in A. Marenco (Coord.), Minutes of the MOZAIC-11 meeting held in FZ/Juelich on 27–29 January 1999, Université Paul Sabatier, Toulouse, pp. 172–176.Google Scholar
  33. 33.
    Kentarchos, A.S., Roelofs, G.J., and Lelieveld, J. (1999) Simulation of extratropical synoptic scale stratosphere-troposphere exchange using a coupled chemistry-GCM: Sensitivity to horizontal resolution, submitted to J. Atm. Sci Google Scholar
  34. 34.
    DeMore, W.B., et al. (1997) Chemical kinetics and photochemical data for use in stratospheric modeling, Evaluation number 12, JPL Publ. 97–4 Google Scholar
  35. 35.
    Jeuken, A., Siegmund, P.C., Heijboer, L.C., Feichter, J., and Bengtsson, L. (1996) On the potential of assimilating meteorological analyses in a global climate model for the purpose of model validation, J. Geophys. Res, 101, 16939–16950.CrossRefGoogle Scholar
  36. 36.
    Rind, D., Lerner, J., Shah, K., and Suozzo, R. (1999) Use of on-line tracers as a diagnostic tool in general circulation model development. 2 Transport between the troposphere and stratosphere, J. Geophys. Res 104, 9151–9167.CrossRefGoogle Scholar
  37. 37.
    Appenzeller, C., Holton, J.R., and Rosenlof, K.H. (1996) Seasonal variation of mass transport across the tropopause, J. Geophys. res 101, 15071–15078.CrossRefGoogle Scholar
  38. 38.
    Penkett, S.A., and Brice, K.A. (1986) The spring maximum in photo-oxidants in the Northern hemisphere troposphere, Nature 319, 655–657.CrossRefGoogle Scholar
  39. 39.
    Crutzen, P.J., and Zimmermann, P.H. (1991) The changing photochemistry of the troposphere, Tellus 43AB.136–151.Google Scholar
  40. 40.
    Müller, J.F., and Brasseur, G. (1999) Sources of tropospheric HO,: a three-dimensional study, J. Geophys. Res, 104 1705–1715.CrossRefGoogle Scholar
  41. 41.
    Intergovernmental Panel on Climate Change (IPCC) (1992) Climate Change, J.T. Houghton, B.A. Callander, and S.K. Varney (Eds.), Cambridge University Press, New York.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • G. J. Roelofs
    • 1
  • J. Lelieveld
    • 1
  1. 1.Institute for Marine and Atmospheric Research (IMAU)Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations