Skip to main content

Kinetics and Mechanism of Homogeneous Reactions of Halomethanes with Chlorine Atoms

  • Chapter
Chemistry and Radiation Changes in the Ozone Layer

Part of the book series: NATO Science Series ((ASIC,volume 557))

  • 205 Accesses

Abstract

The chemical reactivity of several atmospheric halomethanes CH3Br, CH2Br2, CHBr3, CH3I, and CH2CII was studied in the gas phase, by performing kinetic experiments with chlorine atoms. The absolute rate constants were determined as a function of temperature in the range 273–363 K, using the very low-pressure reactor (VLPR) technique. The primary reactive degradation pathway of most halomethanes is the abstraction of a hydrogen atom leading to the formation of HCl molecules, with the exception of CH2CII where the primary pathway is the abstraction of iodine atom leading to CII molecules. All reactions are rather fast with A factors and activation energies in the ranges (1 – 3) x 10-11 molecule-1 s-1 and 0 – 12 kJ mol-1 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Class, T. H. and Ballschmiter, K. (1988) J Atm. Chem 6, 35–46.

    Article  Google Scholar 

  2. Reifenhauser, W. and Heumann, K.G. (1992) Atmos. Environ, 26(A), 2905–2915.

    Google Scholar 

  3. Schall, C. and Heumann, K.G. (1993) Fresenius J Anal. Chem 346, 717–722.

    Article  Google Scholar 

  4. Yokouchi, Y., Barrie, L.A., Toom, D. and Akimoto, H. (1996) Atm. Environ 30, 1723–1727.

    Article  Google Scholar 

  5. Moore, R.M. and Tokarczyk, (1992) J. Geophys. Res 19, 1779.

    Google Scholar 

  6. Rattigan, O.V., Shallcross, D.E. and Cox, R.A. (1997) J Chem. Soc. Faraday Trans 93, 2839.

    Article  Google Scholar 

  7. Roel, C.M., Burkholder, J.B., Moortgat, G.K., Ravishankara, A.R. and Crutzen, P.J.(1997)J. Geophys. Res 102, 12819.

    Article  Google Scholar 

  8. Rudolph, J., Koppmann, R. and Plass-Dülmer, C. (1996) Atmos. Environ 30, 1887.

    Article  Google Scholar 

  9. Gierczak, T., Goldfarb, L., Sueper, D. and Ravishankara, A.R. (1994) Int. J. Chem. Kinet 26, 719.

    Article  Google Scholar 

  10. Orlando, J.J., Tyndall, G.S., Wallington, T.J. and Dill, M. (1996) Int. J. Chem. Kinet 28, 433.

    Article  Google Scholar 

  11. Tschuikow-Roux, E., Faraji, F., Paddison, S., Niedzielski, J. and Miyokawa, K. (1988) J. Phys. Chem 92, 1488.

    Article  Google Scholar 

  12. Ayhens, Y. V., Nicovich, J. M., McKee, M. L. and Wine, P. H. (1997) J Phys. Chem A, 101, 9382–9390.

    Article  Google Scholar 

  13. Bilde, M., Sehested, J., Nielsen, O.J., Wallington, T.J., Meagher, R.J., McIntosh, M.E., Piety, C.A., Nicovich, J.M. and Wine, P.H. (1997)J. Phys. Chem 101, 8035.

    Article  Google Scholar 

  14. Kambanis, K.G., Lazarou, Y.G., and Papagiannakopoulos, P. (1997) Chem. Phys. Lett 268, 498–504

    Article  Google Scholar 

  15. Grice, R. (1995) Int. Rev. Phys. Chem 14, 315.

    Article  Google Scholar 

  16. Kambanis, K.G., Lazarou, Y.G., and Papagiannakopoulos, P. (1997) J. Phys. Chem 101, 8496–8502.

    Article  Google Scholar 

  17. Lazarou, Y.G., Kambanis, K.G. and Papagiannakopoulos, P. (1997) Chem.Phys.Lett 271, 280–286.

    Article  Google Scholar 

  18. Kambanis, K.G., Argyris, D.Y., Lazarou, Y.G. and Papagiannakopoulos, P. (1999) J Phys. Chem 103, 3210–3215.

    Article  Google Scholar 

  19. Lazarou, Y.G., Michael, C. and Papagiannakopoulos, P. (1992) J Phys. Chem 96, 1705–1708.

    Article  Google Scholar 

  20. Lazarou, Y.G. and Papagiannakopoulos, P. (1995) Int.JChem.Kinet 27, 343.

    Article  Google Scholar 

  21. Benson, S.W. Thermochemical Kinetics, 2nd ed.; Wiley-Interscience: New York, 1976.

    Google Scholar 

  22. DeMore, W.B., Sander, S.P., Golden, D.M., Hampson, R.F., Kurylo, M.J., Howard, C.J., Ravishankara, A.R., Kolb, C.E. and Molina, M.J., 1997: Chemical Kinetics and Photochemical Data for Use in Stratospheric Modelling, JPL Publication 97–4

    Google Scholar 

  23. Russel, P.B., Lightfoot, P.D., Caralp, F., Calone, V., Lesclaux, R. and Forst, W. (1991) J. Chem. Soc. Faraday Trans 87, 2367.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Papagiannakopoulos, P. (2000). Kinetics and Mechanism of Homogeneous Reactions of Halomethanes with Chlorine Atoms. In: Zerefos, C.S., Isaksen, I.S.A., Ziomas, I. (eds) Chemistry and Radiation Changes in the Ozone Layer. NATO Science Series, vol 557. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4353-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4353-0_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6514-3

  • Online ISBN: 978-94-011-4353-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics