Tropospheric Aerosol Formation: Processes, Observations and Simulations

  • Richard P. Turco
  • Fangqun Yu
Part of the NATO Science Series book series (ASIC, volume 557)


Aerosols are recognized to have a role in global and regional climate and chemistry [1,2]. Sources of aerosols include mechanical generation (e.g., soil dust, sea salt spray, smoke and ash), and dispersed sources due to gas-to-particle conversion. New simultaneous measurements of ultrafine particles (i.e., having sizes from ~3–20 nm) and precursor vapor concentrations (notably H2SO4) [3–8] provides new windows into understanding natural aerosol formation processes. Nevertheless, the basic mechanisms leading to aerosol generation remain unresolved. In recent years, attention has focused on the possibility of binary homogeneous nucleation (BI-IN) of sulfuric acid and water vapor under a variety of conditions [9,10]. However, in direct applications of the classical BI-N theory [11], new particle formation is precluded in many typical situations in the lower atmosphere [3,4,12–18].


Ultrafine Particle Cloud Condensation Nucleus Aerosol Formation Marine Boundary Layer Mobility Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Twomey, S. J., The influence of pollution on the shortwave albedo of clouds, Atmos. Sci., 34, 1149–1152, 1977.CrossRefGoogle Scholar
  2. 2.
    Charlson, R. J., J. E. Lovelock, M. O. Andreae and S. G. Warren, Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate, Nature, 326, 655–661, 1987.CrossRefGoogle Scholar
  3. 3.
    Weber, R. J., J. J. Marti, P. H. McMurray, F. L. Eisele, D. J. Tanner and A. Jefferson, Measured atmospheric new particle formation rates: Implications for nucleation mechanisms, Chem. Eng. Comm, 151, 53–64, 1996.CrossRefGoogle Scholar
  4. 4.
    Weber, R. J., J. J. Marti, P. H. McMurray, F. L. Eisele, D. J. Tanner and A. Jefferson, Measurements of new particle formation and ultrafine particle growth rates at a clean continental site, J. Geophys. Res, 102, 4375–4385, 1997.CrossRefGoogle Scholar
  5. 5.
    Weber, R. J., P. H. McMurray, L. Mauldin, D. J. Tanner, F. L. Eisele, F. J. Brechtel, S. M. Kreidenweis, G. L. Kok, R. D. Schillawski and D. Baumgardner, A study of new particle formation and growth involving biogenic and trace gas species measured during ACE 1, J Geophys. Res, 103, 16385–16396, 1998.CrossRefGoogle Scholar
  6. 6.
    R. J. Weber et al., Geophys. Res. Lett, 26, 307–310 (1999).CrossRefGoogle Scholar
  7. 7.
    A. D. Clarke et al., Science, 282, 89 (1998).CrossRefGoogle Scholar
  8. 8.
    Clarke, A. D., V. N. Kapustin, F. L. Eisele, R. J. Weber and P. H. McMurray, Particle production near marine clouds: Sulfuric acid and predictions from classical binary nucleation, GRL, 26, 2425–2428, 1999.CrossRefGoogle Scholar
  9. 9.
    Laaksonen, A., V. Talanquer and D. W. Oxtoby, Nucleation: Measurements, theory, and atmospheric applications, Ann. Rev. Phys. Chem, 46, 489–524, 1995.CrossRefGoogle Scholar
  10. 10.
    Kulmala, M., A. Laaksonen and L. Pirjola, Parameterizations for sulphuric acid/water nucleation rates, J. Geophys. Res, 103, 8301–8307, 1998.CrossRefGoogle Scholar
  11. 11.
    Hamill, P., R. P. Turco, C. S. Kiang, O. B. Toon and R. C. Whitten, An analysis of various nucleation mechanisms for sulfate particles in the stratosphere, J Aerosol Sci, 13, 561–585, 1982.CrossRefGoogle Scholar
  12. 12.
    Hoppel, W. A., G. M. Frick, J. W. Fitzgerald and R. E. Larson, Marine boundary layer measurements of new particle formation and the effects nonprecipitating clouds have on aerosol size distribution, J Geophys. Res, 99, 14443–14459, 1994.CrossRefGoogle Scholar
  13. 13.
    Shaw, G. E., Production of condensation nuclei in clean air by nucleation of H2SO4, Atmos. Environ, 23, 2841–2846, 1989.CrossRefGoogle Scholar
  14. 14.
    Marti, J. J., R. J. Weber, P. H. McMurray, F. Eisele, D. Tanner and A. Jefferson, New particle formation at a remote continental site: Assessing the contributions of SO2 and organic precursors, J. Geophys. Res, 102, 6331–6339, 1997.CrossRefGoogle Scholar
  15. 15.
    Raes, F., R. van Dingenen, E. Cuevas, P.F.J. van Velthoven and J. M. Prospero, Observations of aerosols in the free troposphere and marine boundary layer of the subtropical Northeast Atlantic: Discussion of processes determining their size distribution, J Geophys. Res, 102, 21315–21328, 1997.CrossRefGoogle Scholar
  16. 16.
    Pirjola, L., A. Laaksonen, P. Aalto and M. Kulmala, Sulfate aerosol formation in the Arctic boundary layer, J. Geophys. Res, 103, 8309–8321, 1998.CrossRefGoogle Scholar
  17. 17.
    O’Dowd, C. D., M. Geever, M. K. Hill, M. H. Smith and S. G. Jennings, New particle formation: Nucleation rates and spatial scales in the clean marine coastal environment, Geophys. Res. Leu, 25, 1661–1664, 1998.CrossRefGoogle Scholar
  18. 18.
    O’Dowd, C., G. McFiggans, D. J. Creasey, L. Pirjola, C. Hoell, M. H. Smith, B. J. Allan, J.M.C. Plane, D. E. Heard, J. D. Lee, M. J. Pilling and M. Kulmala, On the photochemical production of new particles in the coastal boundary layer, Geophys. Res. Lett, 26, 1707–1710, 1999.CrossRefGoogle Scholar
  19. 19.
    Turco, R. P., F. Yu and J.-X. Zhao, A new source of tropospheric aerosols: Ion-ion recombination, Geophys. Res. Lett, 25, 635–638, 1998 CrossRefGoogle Scholar
  20. 20.
    S. M. Kreidenweis and J. H. Seinfeld, Atmos. Environ 22, 283 (1988).CrossRefGoogle Scholar
  21. 21.
    D. A. Hegg, D. S. Covert, V. N. Kapustin, J. Geophys. Res, 97, 9851 (1992).CrossRefGoogle Scholar
  22. 22.
    Russell, L. M., S. N. Pandis and J. H. Seinfeld, Aerosol production and growth in the marine boundary layer, J. Geophys. Res, 99, 20989–21003, 1994.CrossRefGoogle Scholar
  23. 23.
    Raes, F., Entrainment of free tropospheric aerosols as a regulating mechanism for cloud condensation nuclei in the remote marine boundary layer, J Geophys. Res, 100, 2893–2903, 1995.CrossRefGoogle Scholar
  24. 24.
    Fitzgerald, J. W., J. J. Marti, W. A. Hoppel, G. M. Frick and F. Gelbard, A one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer, 2. Model application, J. Geophys. Res, 103, 16103–16117, 1998.CrossRefGoogle Scholar
  25. 25.
    Coffman, D. J., and D. A. Hegg, A preliminary study of the effect of ammonia on particle nucleation in the marine boundary layer, J Geophys. Res, 100, 7147–7160, 1995.CrossRefGoogle Scholar
  26. 26.
    Ziereis, H., and F. Arnold, Gaseous ammonia and ammonium ions in the free troposphere, Nature, 321, 503–505, 1986.CrossRefGoogle Scholar
  27. 27.
    Clarke, A. D., et al., Geophys. Res. Lett, 26, 1999; Clarke, A. D., J Geophys. Res, 104, 5735–5744 (1999).Google Scholar
  28. 28.
    McGraw, R., and R. J. Weber, Hydrates in binary sulfuric acid-water vapor: Comparison of CIMS measurements with the liquid-drop model, Geophys. Res. Lett, 25, 3143–3146, 1998.CrossRefGoogle Scholar
  29. 29.
    Weber, R. J., A. D. Clarke, M. Litchy, J. Li, G. Kok, R. D. Schillawski and P. H. McMurray, Spurious aerosol measurements when sampling from aircraft in the vicinity of clouds, J Geophys. Res, 103, 28337–28346, 1998.CrossRefGoogle Scholar
  30. 30.
    Yu, F., and R. P. Turco, The formation and evolution of aerosols in stratospheric aircraft plumes: Numerical simulations and comparisons with observations, J Geophys. Res, 103, 25915–25934, 1998.CrossRefGoogle Scholar
  31. 31.
    Brock, C. A., P. Hamill, J. C. Wilson, H. H. Jonsson and K. R. Chan, Particle formation in the upper tropical troposphere: A source of nuclei for the stratospheric aerosol, Science, 270, 1650–1653, 1995.CrossRefGoogle Scholar
  32. 32.
    Clarke, A. D., Atmospheric nuclei in the Pacific midtroposphere: Their nature, concentration, and evolution, J Geophys. Res, 98, 20,633–20,647, 1993.CrossRefGoogle Scholar
  33. 33.
    Yu, F., and R. Turco, Aerosol formation via ion-mediated nucleation in the lower atmosphere, Geophys. Res. Lett, 27, in press, 2000.Google Scholar
  34. 34.
    Mohnen, V. A., Discussion of the formation of major positive and negative ions up to the 50 km level, Pure Appl. Geophys, 84, 141–153, 1971.CrossRefGoogle Scholar
  35. 35.
    Davidson, J. A., F. C. Fehsenfeld and C. J. Howard, The heats of formation of NO3 - and NO3 - association complexes with HNO3 and HBr, Int. J Chem. Kinetics, 9, 17–29, 1977.CrossRefGoogle Scholar
  36. 36.
    Arnold, F., Multi-ion complexes in the stratosphere—Implications for trace gases and aerosol, Nature, 284, 610–611, 1980.CrossRefGoogle Scholar
  37. 37.
    Arnold, F., and G. Henschen, First mass analysis of stratospheric negative ions, Nature, 275, 521–522, 1978.CrossRefGoogle Scholar
  38. 38.
    Arnold, F., and G. Henschen, Mass spectrometric detection of pre-condensation nuclei in the stratosphere—Evidence for a stratospheric gas to particle conversion mechanism, Geophys. Res. Lett, 8, 83–86, 1981.CrossRefGoogle Scholar
  39. 39.
    Arnold, F, A. A. Viggiano and H. Schlager, Implications for trace gases and aerosols of large negative ion clusters in the stratosphere, Nature, 297, 371–376, 1982.CrossRefGoogle Scholar
  40. 40.
    Keesee, R. G., N. Lee and A. W. Castleman, Jr., Atmospheric negative ion hydration derived from laboratory results and comparison to rocket-borne measurements in the lower ionosphere, J. Geophys. Res, 84, 3719–3722, 1979.CrossRefGoogle Scholar
  41. 41.
    Viggiano, A. A., and F. Arnold, Ion chemistry and composition of the atmosphere, in Handbook of Atmospheric Electrodynamics, edited by H. Volland, p. 1, CRC Press, Boca Raton, 1995.Google Scholar
  42. 42.
    Eisele, F. L., Identification of tropospheric ions, J. Geophys. Res, 91, 7897–7906, 1986.CrossRefGoogle Scholar
  43. 43.
    Eisele, F. L., First tandem mass spectrometric measurement of tropospheric ions, J. Geophys. Res, 93, 716–724,1988.CrossRefGoogle Scholar
  44. 44.
    Eisele, F. L., Natural and anthropogenic negative ions in the troposphere, J Geophys. Res, 94, 2183–2196, 1989.CrossRefGoogle Scholar
  45. 45.
    Eisele, F. L., and D. J. Tanner, Identification of ions in continental air, J. Geophys. Res, 95, 20539–20550, 1990.CrossRefGoogle Scholar
  46. 46.
    Perkins, M. D., and F. L. Eisele, First mass spectrometric measurements of atmospheric ions at ground level, J Geophys. Res, 89, 9649–9657, 1984.CrossRefGoogle Scholar
  47. 47.
    Tanner, D. J., and F. L. Eisele, Ions in oceanic and continental air masses, J Geophys. Res, 96, 1023–1031, 1991.CrossRefGoogle Scholar
  48. 48.
    Hoppel, W. A., Determination of the aerosol size distribution from the mobility distribution of the charged fraction of aerosols, J. Aerosol Sci, 9, 41–54, 1978.CrossRefGoogle Scholar
  49. 49.
    Castleman, A. W., Jr., Experimental studies of ion clustering: Relationship to aerosol formation processes and some atmospheric implications, J Aerosol Sci, 13, 73–85, 1982.CrossRefGoogle Scholar
  50. 50.
    Chan, L. Y., and V. A. Mohnen, The formation of ultrafine ion H2O-H2SO4 aerosol particles through ion-induced nucleation processes in the stratosphere, J Aerosol Sci, 11, 35–45, 1980.CrossRefGoogle Scholar
  51. 51.
    Arnold, F., Ion nucleation—A potential source for stratospheric aerosols, Nature, 299, 134–137, 1982.CrossRefGoogle Scholar
  52. 52.
    Zhao, J.-X., O. B. Toon and R. P. Turco, Origin of condensation nuclei in the springtime polar stratosphere, J. Geophys. Res, 100, 5215–5227, 1995.CrossRefGoogle Scholar
  53. 53.
    Fehsenfeld, F. C., and E. E. Ferguson, Laboratory studies of negative ion reactions with atmospheric trace constituents, J. Chem. Phys, 61, 3181–3193, 1974.CrossRefGoogle Scholar
  54. 54.
    Fehsenfeld, F. C., C. J. Howard and A. L. Schmeltekopf, Gas phase ion chemistry of HNO3, J Chem. Phys, 63, 2835–2841, 1975.CrossRefGoogle Scholar
  55. 55.
    Castleman, A. W., Jr., and R. G. Keesee, Ionic clusters, Chem. Rev, 86, 589–618, 1986.CrossRefGoogle Scholar
  56. 56.
    Castleman, A. W., Jr., P. M. Holland and R. G. Keesee, The properties of ion clusters and their relationship to heteromolecular nucleation, J Chem. Phys, 68, 1760–1767, 1978.CrossRefGoogle Scholar
  57. 57.
    Castleman, A. W., Jr., P. M. Holland and R. G. Keesee, Ion associated processes and ion clustering: Elucidating transitions from the gaseous to the condensed phase, Radial. Phys. Chem, 20, 57–74, 1982.Google Scholar
  58. 58.
    Viggiano, A. A., R. A. Perry, D. L. Albritton, E. E. Ferguson and F. C. Fehsenfeld, The role of H2SO4 in stratospheric negative-ion chemistry, J Geophys. Res, 85, 4551–4555, 1980.CrossRefGoogle Scholar
  59. 59.
    Viggiano, A. A., R. A. Morris, F. Dale and J. F. Paulson, Tropospheric reactions of H+(NH3)m(H2O)n with pyridine and picoline, J. Geophys. Res, 93, 9534–9538, 1988.CrossRefGoogle Scholar
  60. 60.
    Viggiano, A. A., F. Dale and J. F. Paulson, Proton transfer reactions of H+(H2O)n=2–11 with methanol, ammonia, pyridine, acetonitrile, and acetone, J. Chem. Phys, 88, 2469–2477, 1988.CrossRefGoogle Scholar
  61. 61.
    Payzant, J. D., A. J. Cunningham and P. Kebarle, Kinetics and rate constants of reactions leading to hydration of NO2 and NO3 in gaseous oxygen, argon and helium containing traces of water, Canad. J. Chem, 50, 2230–2235, 1972.CrossRefGoogle Scholar
  62. 62.
    Singh, J. J., and A. C. Smith, Experimental studies of the ion-induced binary nucleation, J. Aerosol Sci, 13,285–295,1982.CrossRefGoogle Scholar
  63. 63.
    Witt, G., The nature of noctilucent clouds, Space Res, 9, 157–169, 1969Google Scholar
  64. 64.
    Arnold, F., Ion-induced nucleation of atmospheric water vapor at the mesopause, Planet. Space Sci, 28, 1003–1009, 1980.CrossRefGoogle Scholar
  65. 65.
    Arnold, F., and W. Joos, Rapid growth of atmospheric cluster ions at the cold mesopause, Geophys. Res. Lett, 6, 763–766, 1979.CrossRefGoogle Scholar
  66. 66.
    Turco, R. P., O. B. Toon, R. C. Whitten, R. G. Keesee and D. Hollenbach, Noctilucent clouds: Simulation studies of their genesis, properties and global influences, Planet. Space Sci, 30, 1147–1181, 1982.CrossRefGoogle Scholar
  67. 67.
    Hunten, D. M., R. P. Turco and O. B. Toon, Smoke and dust particles of meteoric origin in the mesosphere and stratosphere, J. Atmos. Sci, 37, 1342–1357, 1980.CrossRefGoogle Scholar
  68. 68.
    Sugiyama, T., Ion-recombination nucleation and growth of ice particles in noctilucent clouds, J. Geophys. Res, 99, 3915–3929, 1994.CrossRefGoogle Scholar
  69. 69.
    Raes, F., and A. Janssens, Ion-induced aerosol formation in a H2O-H2SO4 system—I. Extension of the classical theory and search for experimental evidence, J Aerosol Sci, 16, 217–227, 1985.CrossRefGoogle Scholar
  70. 70.
    Raes, F., and A. Janssens, Ion-induced aerosol formation in a H2O-H2SO4 system—II. Numerical calculations and conclusions, J Aerosol Sci, 17, 715–722, 1986.CrossRefGoogle Scholar
  71. 71.
    Bricard, J., M. Cabane, G. Madelaine and D. Vigla, Formation and properties of neutral ultrafine particles and small ions conditioned by gaseous impurities of the air, J. Colloid Interface Sci, 39, 42–58, 1972.CrossRefGoogle Scholar
  72. 72.
    Madelaine, G. J., M. L. Perrin and A. Renoux, Formation and evolution of ultrafine particles produced by radiolysis and photolysis, J. Geophys. Res, 85, 7471–7474, 1980.CrossRefGoogle Scholar
  73. 73.
    Diamond, G. L., J. V. Iribarne and D. J. Corr, Ion-induced nucleation from sulfur dioxide, J. Aerosol Sci, 16, 43–55, 1985.CrossRefGoogle Scholar
  74. 74.
    Rabeony, H., and P. Mirabel, Experimental study of vapor nucleation on ions, J. Phys. Chem, 91, 1815–1818, 1987.Google Scholar
  75. 75.
    Yu, F., and R. Turco, The role of ions in the formation and evolution of particles in aircraft plumes, Geophys. Res. Lett, 24, 1927–30, 1997.CrossRefGoogle Scholar
  76. 76.
    Hörrak, U., H. Iher, A. Luts and H. Tammet, Mobility spectrum of air ions at Tahkuse Observatory, J. Geophys. Res, 99, 10697–10700, 1994.CrossRefGoogle Scholar
  77. 77.
    Hörrak, U., J. Salm and H. Tammet, Outbursts of nanometer particles in atmospheric air, J Aerosol Sci, 26, S207–208, 1995.CrossRefGoogle Scholar
  78. 78.
    Hörrak, U., J. Salm and H. Tammet, Bursts of intermediate ions in atmospheric air, J. Geophys. Res, 103, 13909–13915,1998.CrossRefGoogle Scholar
  79. 79.
    Friedl, R. R., Editor, Atmospheric Effects of Subsonic Aircraft: Interim Assessment Report of the Advanced Subsonic “Technology Program, NASA Ref. Publ., 1400, 1997.Google Scholar
  80. 80.
    Yu, F., and R. Turco, Evolution of aircraft-generated volatile particles from near to far wakes: Potential contributions to CCN/IN,“ Geophys. Res. Lett, 26,, 1999.Google Scholar
  81. 81.
    Schröder F. P., B. Kärcher, A. Petzold, R. Baumann, R. Busen, C. Hoell, and U. Schumann, Ultrafine aerosol particles in aircraft plumes: In-situ observations, Geophys. Res. Lett, 25, 1998.Google Scholar
  82. 82.
    Zhao, J.-X., and R. P. Turco, Nucleation simulations in the wake of a jet aircraft in stratospheric flight, J. Aerosol Sci, 26, 779–795, 1995.CrossRefGoogle Scholar
  83. 83.
    Kärcher, B., Th. Peter and R. Ottmann, Contrail formation: Homogeneous nucleation of H2SO4-H2O droplets, Geophys. Res. Lett, 22, 1501–1504, 1995.CrossRefGoogle Scholar
  84. 84.
    F. Yu, R. P. Turco, B. Kärcher and F. P. Schröder, On the mechanisms controlling the formation and properties of volatile particles in aircraft wakes, Geophys. Res. Lett, 25, 3839–3842 (1998).CrossRefGoogle Scholar
  85. 85.
    B. Kärcher, F. Yu, F. P. Schröder and R. P. Turco, Ultrafine aerosol particles in aircraft plumes: Analysis of growth mechanisms, Geophys. Res. Lett, 25, 2793–2796 (1998).CrossRefGoogle Scholar
  86. 86.
    Yu, F., R. P. Turco and B. Kärcher, The possible role of organics in the formation and evolution of ultrafine aircraft particles, J. Geophys. Res, 104, 4079–4087 (1999).CrossRefGoogle Scholar
  87. 87.
    Whitby, K. T., and B.Y.H. Liu, The electrical behavior of aerosols, in Aerosol Science, pp. 59–86, C. N. Davies, Ed., Academic Press, New York, 1966.Google Scholar
  88. 88.
    W. A. Hoppel and G. M. Frick, Aerosol Sci. Tech 5, 1 (1986).CrossRefGoogle Scholar
  89. 89.
    B. Karcher, R. P. Turco, F. Yu, R. C. Miake-Lye, M. Y. Danilin, D. K. Weisenstein and R. Busen: “Towards a quantitative understanding of new particle formation in aircraft exhaust plumes,” Nature, submitted (2000).Google Scholar
  90. 90.
    F. Arnold et al., Geophys. Res. Lett, 25, 2137 (1998).CrossRefGoogle Scholar
  91. 91.
    Arnold, F., et al., Detection of massive negative chemiions in the exhaust plume of a jet aircraft in flight, Geophys. Res. Lett, 26, 1577 (1999).CrossRefGoogle Scholar
  92. 92.
    Curtius et al. Geophys. Res. Lett, 26, (1999).Google Scholar
  93. 93.
    Turco, R. P., J.-X. Zhao and F. Yu, Tropospheric sulfate aerosol formation via ion-ion recombination, paper presented at Joint AGU/Air and Waste Management Assoc. Conf. on Visual Air Quality, Aerosols, and Global Radiation, Bartlett New Hampshire, Sept. 9–12, 1997.Google Scholar
  94. 94.
    Reiter, R., Fields, Currents and Aerosols in the Lower Troposphere, Chpt. 5, Atmospheric Radioactivity and Ionization of Air, Scientific Research Reports, Natural Sciences Series, Vol. 71, National Science Foundation, Washington, D.C., Amerind Publ. Co, New Dehli, 1985.Google Scholar
  95. 95.
    Arnold, F., J. Schneider, K. Gollinger, H. Schlager, P. Schulte, D. E. Hagen, P. D. Whitefield and P. van Velthoven, Observations of upper tropospheric sulfur dioxide-and acetone-pollution: Potential implications for hydroxyl radical and aerosol formation, Geophys. Res. Lett, 24, 57–60, 1997.CrossRefGoogle Scholar
  96. 96.
    Fehsenfeld, F. C., I. Dotan, D. L. Albritton, C. J. Howard and E. E. Ferguson, Stratospheric positive ion chemistry of formaldehyde and methanol, J. Geophys. Res, 83, 1333–1336, 1978.CrossRefGoogle Scholar
  97. 97.
    Huertas, M. L., A. M. Marty and J. Fontan, On the nature of positive ions of tropospheric interest and on the effect of polluting organic vapors, J Geophys. Res, 79, 1737–1743, 1974.CrossRefGoogle Scholar
  98. 98.
    Cole, R. K., and E. T. Pierce, Electrification in the Earth’s atmosphere for altitudes between 0 and 100 kilometers, J. Geophys. Res, 70, 2735–2749, 1965.CrossRefGoogle Scholar
  99. 99.
    Bering, E.A., III, A.A. Few & J.R. Benbrook, The global electric circuit, Phys.Today, pp. 24–30, October, 1998.Google Scholar
  100. 100.
    Huertas, M. L., A. M. Marty, J. Fontan, I. Alet and G. Duffa, Measurement of mobility and mass of atmospheric ions, Aerosol Sci, 2, 145–150, 1971.CrossRefGoogle Scholar
  101. 101.
    Rosen, J. M., D. J. Hofmann, W. Gringel, J. Berlinski, S. Michnowski, Y. Morita, T. Ogawa and D. Olson, Results of an international workshop on atmospheric electrical measurements, JGR, 87, 1219–1227, 1982.CrossRefGoogle Scholar
  102. 102.
    Rosen, J. M., D. J. Hofmann and W. Gringel, Measurements of ion mobility to 30 km, J. Geophys. Res, 90, 5876–5884, 1985.CrossRefGoogle Scholar
  103. 103.
    Dhanorkar, S., % A. K. Kamra, Measurement of mobility spectrum and concentration of all atmospheric ions with a single apparatus, J.G.R, 96, 18671–18678, 1991.CrossRefGoogle Scholar
  104. 104.
    Nagato, K., and T. Ogawa, Evolution of tropospheric ions observed by an ion mobility spectrometer with a drift tube, J. Geophys. Res, 103, 13917–13925, 1998.CrossRefGoogle Scholar
  105. 105.
    Noppel, M., Evolution of mobility spectrum of charged nanometer particles in case of vapour nucleation and condensation, J. Aerosol Sci, 26, S345–346, 1995.CrossRefGoogle Scholar
  106. 106.
    Svensmark, H., Influence of Cosmic Rays on Earth’s Climate, Phys.Rev.Lett. 81, 5027, 1998.CrossRefGoogle Scholar
  107. 107.
    Ordnance, C., W. L. Chemises, D. D. Davis, B. E. Anderson, R. F. Pustule, A. R. Bandy, D. C. Thomton, R. W. Talbot, P. Kasibhatla and C. S. Kiang, Gas-to-particle conversion of tropospheric sulfur as estimated from observations in the westem North Pacific during PEM-West B, J. Geophys. Res, 102, 28511–28538, 1997.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Richard P. Turco
    • 1
  • Fangqun Yu
    • 1
  1. 1.Department of Atmospheric SciencesUniversity of CaliforniaLos AngelesUSA

Personalised recommendations