Skip to main content

Tropospheric Aerosol Formation: Processes, Observations and Simulations

  • Chapter
Chemistry and Radiation Changes in the Ozone Layer

Part of the book series: NATO Science Series ((ASIC,volume 557))

  • 199 Accesses

Abstract

Aerosols are recognized to have a role in global and regional climate and chemistry [1,2]. Sources of aerosols include mechanical generation (e.g., soil dust, sea salt spray, smoke and ash), and dispersed sources due to gas-to-particle conversion. New simultaneous measurements of ultrafine particles (i.e., having sizes from ~3–20 nm) and precursor vapor concentrations (notably H2SO4) [3–8] provides new windows into understanding natural aerosol formation processes. Nevertheless, the basic mechanisms leading to aerosol generation remain unresolved. In recent years, attention has focused on the possibility of binary homogeneous nucleation (BI-IN) of sulfuric acid and water vapor under a variety of conditions [9,10]. However, in direct applications of the classical BI-N theory [11], new particle formation is precluded in many typical situations in the lower atmosphere [3,4,12–18].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Twomey, S. J., The influence of pollution on the shortwave albedo of clouds, Atmos. Sci., 34, 1149–1152, 1977.

    Article  Google Scholar 

  2. Charlson, R. J., J. E. Lovelock, M. O. Andreae and S. G. Warren, Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate, Nature, 326, 655–661, 1987.

    Article  Google Scholar 

  3. Weber, R. J., J. J. Marti, P. H. McMurray, F. L. Eisele, D. J. Tanner and A. Jefferson, Measured atmospheric new particle formation rates: Implications for nucleation mechanisms, Chem. Eng. Comm, 151, 53–64, 1996.

    Article  Google Scholar 

  4. Weber, R. J., J. J. Marti, P. H. McMurray, F. L. Eisele, D. J. Tanner and A. Jefferson, Measurements of new particle formation and ultrafine particle growth rates at a clean continental site, J. Geophys. Res, 102, 4375–4385, 1997.

    Article  Google Scholar 

  5. Weber, R. J., P. H. McMurray, L. Mauldin, D. J. Tanner, F. L. Eisele, F. J. Brechtel, S. M. Kreidenweis, G. L. Kok, R. D. Schillawski and D. Baumgardner, A study of new particle formation and growth involving biogenic and trace gas species measured during ACE 1, J Geophys. Res, 103, 16385–16396, 1998.

    Article  Google Scholar 

  6. R. J. Weber et al., Geophys. Res. Lett, 26, 307–310 (1999).

    Article  Google Scholar 

  7. A. D. Clarke et al., Science, 282, 89 (1998).

    Article  Google Scholar 

  8. Clarke, A. D., V. N. Kapustin, F. L. Eisele, R. J. Weber and P. H. McMurray, Particle production near marine clouds: Sulfuric acid and predictions from classical binary nucleation, GRL, 26, 2425–2428, 1999.

    Article  Google Scholar 

  9. Laaksonen, A., V. Talanquer and D. W. Oxtoby, Nucleation: Measurements, theory, and atmospheric applications, Ann. Rev. Phys. Chem, 46, 489–524, 1995.

    Article  Google Scholar 

  10. Kulmala, M., A. Laaksonen and L. Pirjola, Parameterizations for sulphuric acid/water nucleation rates, J. Geophys. Res, 103, 8301–8307, 1998.

    Article  Google Scholar 

  11. Hamill, P., R. P. Turco, C. S. Kiang, O. B. Toon and R. C. Whitten, An analysis of various nucleation mechanisms for sulfate particles in the stratosphere, J Aerosol Sci, 13, 561–585, 1982.

    Article  Google Scholar 

  12. Hoppel, W. A., G. M. Frick, J. W. Fitzgerald and R. E. Larson, Marine boundary layer measurements of new particle formation and the effects nonprecipitating clouds have on aerosol size distribution, J Geophys. Res, 99, 14443–14459, 1994.

    Article  Google Scholar 

  13. Shaw, G. E., Production of condensation nuclei in clean air by nucleation of H2SO4, Atmos. Environ, 23, 2841–2846, 1989.

    Article  Google Scholar 

  14. Marti, J. J., R. J. Weber, P. H. McMurray, F. Eisele, D. Tanner and A. Jefferson, New particle formation at a remote continental site: Assessing the contributions of SO2 and organic precursors, J. Geophys. Res, 102, 6331–6339, 1997.

    Article  Google Scholar 

  15. Raes, F., R. van Dingenen, E. Cuevas, P.F.J. van Velthoven and J. M. Prospero, Observations of aerosols in the free troposphere and marine boundary layer of the subtropical Northeast Atlantic: Discussion of processes determining their size distribution, J Geophys. Res, 102, 21315–21328, 1997.

    Article  Google Scholar 

  16. Pirjola, L., A. Laaksonen, P. Aalto and M. Kulmala, Sulfate aerosol formation in the Arctic boundary layer, J. Geophys. Res, 103, 8309–8321, 1998.

    Article  Google Scholar 

  17. O’Dowd, C. D., M. Geever, M. K. Hill, M. H. Smith and S. G. Jennings, New particle formation: Nucleation rates and spatial scales in the clean marine coastal environment, Geophys. Res. Leu, 25, 1661–1664, 1998.

    Article  Google Scholar 

  18. O’Dowd, C., G. McFiggans, D. J. Creasey, L. Pirjola, C. Hoell, M. H. Smith, B. J. Allan, J.M.C. Plane, D. E. Heard, J. D. Lee, M. J. Pilling and M. Kulmala, On the photochemical production of new particles in the coastal boundary layer, Geophys. Res. Lett, 26, 1707–1710, 1999.

    Article  Google Scholar 

  19. Turco, R. P., F. Yu and J.-X. Zhao, A new source of tropospheric aerosols: Ion-ion recombination, Geophys. Res. Lett, 25, 635–638, 1998

    Article  Google Scholar 

  20. S. M. Kreidenweis and J. H. Seinfeld, Atmos. Environ 22, 283 (1988).

    Article  Google Scholar 

  21. D. A. Hegg, D. S. Covert, V. N. Kapustin, J. Geophys. Res, 97, 9851 (1992).

    Article  Google Scholar 

  22. Russell, L. M., S. N. Pandis and J. H. Seinfeld, Aerosol production and growth in the marine boundary layer, J. Geophys. Res, 99, 20989–21003, 1994.

    Article  Google Scholar 

  23. Raes, F., Entrainment of free tropospheric aerosols as a regulating mechanism for cloud condensation nuclei in the remote marine boundary layer, J Geophys. Res, 100, 2893–2903, 1995.

    Article  Google Scholar 

  24. Fitzgerald, J. W., J. J. Marti, W. A. Hoppel, G. M. Frick and F. Gelbard, A one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer, 2. Model application, J. Geophys. Res, 103, 16103–16117, 1998.

    Article  Google Scholar 

  25. Coffman, D. J., and D. A. Hegg, A preliminary study of the effect of ammonia on particle nucleation in the marine boundary layer, J Geophys. Res, 100, 7147–7160, 1995.

    Article  Google Scholar 

  26. Ziereis, H., and F. Arnold, Gaseous ammonia and ammonium ions in the free troposphere, Nature, 321, 503–505, 1986.

    Article  Google Scholar 

  27. Clarke, A. D., et al., Geophys. Res. Lett, 26, 1999; Clarke, A. D., J Geophys. Res, 104, 5735–5744 (1999).

    Google Scholar 

  28. McGraw, R., and R. J. Weber, Hydrates in binary sulfuric acid-water vapor: Comparison of CIMS measurements with the liquid-drop model, Geophys. Res. Lett, 25, 3143–3146, 1998.

    Article  Google Scholar 

  29. Weber, R. J., A. D. Clarke, M. Litchy, J. Li, G. Kok, R. D. Schillawski and P. H. McMurray, Spurious aerosol measurements when sampling from aircraft in the vicinity of clouds, J Geophys. Res, 103, 28337–28346, 1998.

    Article  Google Scholar 

  30. Yu, F., and R. P. Turco, The formation and evolution of aerosols in stratospheric aircraft plumes: Numerical simulations and comparisons with observations, J Geophys. Res, 103, 25915–25934, 1998.

    Article  Google Scholar 

  31. Brock, C. A., P. Hamill, J. C. Wilson, H. H. Jonsson and K. R. Chan, Particle formation in the upper tropical troposphere: A source of nuclei for the stratospheric aerosol, Science, 270, 1650–1653, 1995.

    Article  Google Scholar 

  32. Clarke, A. D., Atmospheric nuclei in the Pacific midtroposphere: Their nature, concentration, and evolution, J Geophys. Res, 98, 20,633–20,647, 1993.

    Article  Google Scholar 

  33. Yu, F., and R. Turco, Aerosol formation via ion-mediated nucleation in the lower atmosphere, Geophys. Res. Lett, 27, in press, 2000.

    Google Scholar 

  34. Mohnen, V. A., Discussion of the formation of major positive and negative ions up to the 50 km level, Pure Appl. Geophys, 84, 141–153, 1971.

    Article  Google Scholar 

  35. Davidson, J. A., F. C. Fehsenfeld and C. J. Howard, The heats of formation of NO3 - and NO3 - association complexes with HNO3 and HBr, Int. J Chem. Kinetics, 9, 17–29, 1977.

    Article  Google Scholar 

  36. Arnold, F., Multi-ion complexes in the stratosphere—Implications for trace gases and aerosol, Nature, 284, 610–611, 1980.

    Article  Google Scholar 

  37. Arnold, F., and G. Henschen, First mass analysis of stratospheric negative ions, Nature, 275, 521–522, 1978.

    Article  Google Scholar 

  38. Arnold, F., and G. Henschen, Mass spectrometric detection of pre-condensation nuclei in the stratosphere—Evidence for a stratospheric gas to particle conversion mechanism, Geophys. Res. Lett, 8, 83–86, 1981.

    Article  Google Scholar 

  39. Arnold, F, A. A. Viggiano and H. Schlager, Implications for trace gases and aerosols of large negative ion clusters in the stratosphere, Nature, 297, 371–376, 1982.

    Article  Google Scholar 

  40. Keesee, R. G., N. Lee and A. W. Castleman, Jr., Atmospheric negative ion hydration derived from laboratory results and comparison to rocket-borne measurements in the lower ionosphere, J. Geophys. Res, 84, 3719–3722, 1979.

    Article  Google Scholar 

  41. Viggiano, A. A., and F. Arnold, Ion chemistry and composition of the atmosphere, in Handbook of Atmospheric Electrodynamics, edited by H. Volland, p. 1, CRC Press, Boca Raton, 1995.

    Google Scholar 

  42. Eisele, F. L., Identification of tropospheric ions, J. Geophys. Res, 91, 7897–7906, 1986.

    Article  Google Scholar 

  43. Eisele, F. L., First tandem mass spectrometric measurement of tropospheric ions, J. Geophys. Res, 93, 716–724,1988.

    Article  Google Scholar 

  44. Eisele, F. L., Natural and anthropogenic negative ions in the troposphere, J Geophys. Res, 94, 2183–2196, 1989.

    Article  Google Scholar 

  45. Eisele, F. L., and D. J. Tanner, Identification of ions in continental air, J. Geophys. Res, 95, 20539–20550, 1990.

    Article  Google Scholar 

  46. Perkins, M. D., and F. L. Eisele, First mass spectrometric measurements of atmospheric ions at ground level, J Geophys. Res, 89, 9649–9657, 1984.

    Article  Google Scholar 

  47. Tanner, D. J., and F. L. Eisele, Ions in oceanic and continental air masses, J Geophys. Res, 96, 1023–1031, 1991.

    Article  Google Scholar 

  48. Hoppel, W. A., Determination of the aerosol size distribution from the mobility distribution of the charged fraction of aerosols, J. Aerosol Sci, 9, 41–54, 1978.

    Article  Google Scholar 

  49. Castleman, A. W., Jr., Experimental studies of ion clustering: Relationship to aerosol formation processes and some atmospheric implications, J Aerosol Sci, 13, 73–85, 1982.

    Article  Google Scholar 

  50. Chan, L. Y., and V. A. Mohnen, The formation of ultrafine ion H2O-H2SO4 aerosol particles through ion-induced nucleation processes in the stratosphere, J Aerosol Sci, 11, 35–45, 1980.

    Article  Google Scholar 

  51. Arnold, F., Ion nucleation—A potential source for stratospheric aerosols, Nature, 299, 134–137, 1982.

    Article  Google Scholar 

  52. Zhao, J.-X., O. B. Toon and R. P. Turco, Origin of condensation nuclei in the springtime polar stratosphere, J. Geophys. Res, 100, 5215–5227, 1995.

    Article  Google Scholar 

  53. Fehsenfeld, F. C., and E. E. Ferguson, Laboratory studies of negative ion reactions with atmospheric trace constituents, J. Chem. Phys, 61, 3181–3193, 1974.

    Article  Google Scholar 

  54. Fehsenfeld, F. C., C. J. Howard and A. L. Schmeltekopf, Gas phase ion chemistry of HNO3, J Chem. Phys, 63, 2835–2841, 1975.

    Article  Google Scholar 

  55. Castleman, A. W., Jr., and R. G. Keesee, Ionic clusters, Chem. Rev, 86, 589–618, 1986.

    Article  Google Scholar 

  56. Castleman, A. W., Jr., P. M. Holland and R. G. Keesee, The properties of ion clusters and their relationship to heteromolecular nucleation, J Chem. Phys, 68, 1760–1767, 1978.

    Article  Google Scholar 

  57. Castleman, A. W., Jr., P. M. Holland and R. G. Keesee, Ion associated processes and ion clustering: Elucidating transitions from the gaseous to the condensed phase, Radial. Phys. Chem, 20, 57–74, 1982.

    Google Scholar 

  58. Viggiano, A. A., R. A. Perry, D. L. Albritton, E. E. Ferguson and F. C. Fehsenfeld, The role of H2SO4 in stratospheric negative-ion chemistry, J Geophys. Res, 85, 4551–4555, 1980.

    Article  Google Scholar 

  59. Viggiano, A. A., R. A. Morris, F. Dale and J. F. Paulson, Tropospheric reactions of H+(NH3)m(H2O)n with pyridine and picoline, J. Geophys. Res, 93, 9534–9538, 1988.

    Article  Google Scholar 

  60. Viggiano, A. A., F. Dale and J. F. Paulson, Proton transfer reactions of H+(H2O)n=2–11 with methanol, ammonia, pyridine, acetonitrile, and acetone, J. Chem. Phys, 88, 2469–2477, 1988.

    Article  Google Scholar 

  61. Payzant, J. D., A. J. Cunningham and P. Kebarle, Kinetics and rate constants of reactions leading to hydration of NO2 and NO3 in gaseous oxygen, argon and helium containing traces of water, Canad. J. Chem, 50, 2230–2235, 1972.

    Article  Google Scholar 

  62. Singh, J. J., and A. C. Smith, Experimental studies of the ion-induced binary nucleation, J. Aerosol Sci, 13,285–295,1982.

    Article  Google Scholar 

  63. Witt, G., The nature of noctilucent clouds, Space Res, 9, 157–169, 1969

    Google Scholar 

  64. Arnold, F., Ion-induced nucleation of atmospheric water vapor at the mesopause, Planet. Space Sci, 28, 1003–1009, 1980.

    Article  Google Scholar 

  65. Arnold, F., and W. Joos, Rapid growth of atmospheric cluster ions at the cold mesopause, Geophys. Res. Lett, 6, 763–766, 1979.

    Article  Google Scholar 

  66. Turco, R. P., O. B. Toon, R. C. Whitten, R. G. Keesee and D. Hollenbach, Noctilucent clouds: Simulation studies of their genesis, properties and global influences, Planet. Space Sci, 30, 1147–1181, 1982.

    Article  Google Scholar 

  67. Hunten, D. M., R. P. Turco and O. B. Toon, Smoke and dust particles of meteoric origin in the mesosphere and stratosphere, J. Atmos. Sci, 37, 1342–1357, 1980.

    Article  Google Scholar 

  68. Sugiyama, T., Ion-recombination nucleation and growth of ice particles in noctilucent clouds, J. Geophys. Res, 99, 3915–3929, 1994.

    Article  Google Scholar 

  69. Raes, F., and A. Janssens, Ion-induced aerosol formation in a H2O-H2SO4 system—I. Extension of the classical theory and search for experimental evidence, J Aerosol Sci, 16, 217–227, 1985.

    Article  Google Scholar 

  70. Raes, F., and A. Janssens, Ion-induced aerosol formation in a H2O-H2SO4 system—II. Numerical calculations and conclusions, J Aerosol Sci, 17, 715–722, 1986.

    Article  Google Scholar 

  71. Bricard, J., M. Cabane, G. Madelaine and D. Vigla, Formation and properties of neutral ultrafine particles and small ions conditioned by gaseous impurities of the air, J. Colloid Interface Sci, 39, 42–58, 1972.

    Article  Google Scholar 

  72. Madelaine, G. J., M. L. Perrin and A. Renoux, Formation and evolution of ultrafine particles produced by radiolysis and photolysis, J. Geophys. Res, 85, 7471–7474, 1980.

    Article  Google Scholar 

  73. Diamond, G. L., J. V. Iribarne and D. J. Corr, Ion-induced nucleation from sulfur dioxide, J. Aerosol Sci, 16, 43–55, 1985.

    Article  Google Scholar 

  74. Rabeony, H., and P. Mirabel, Experimental study of vapor nucleation on ions, J. Phys. Chem, 91, 1815–1818, 1987.

    Google Scholar 

  75. Yu, F., and R. Turco, The role of ions in the formation and evolution of particles in aircraft plumes, Geophys. Res. Lett, 24, 1927–30, 1997.

    Article  Google Scholar 

  76. Hörrak, U., H. Iher, A. Luts and H. Tammet, Mobility spectrum of air ions at Tahkuse Observatory, J. Geophys. Res, 99, 10697–10700, 1994.

    Article  Google Scholar 

  77. Hörrak, U., J. Salm and H. Tammet, Outbursts of nanometer particles in atmospheric air, J Aerosol Sci, 26, S207–208, 1995.

    Article  Google Scholar 

  78. Hörrak, U., J. Salm and H. Tammet, Bursts of intermediate ions in atmospheric air, J. Geophys. Res, 103, 13909–13915,1998.

    Article  Google Scholar 

  79. Friedl, R. R., Editor, Atmospheric Effects of Subsonic Aircraft: Interim Assessment Report of the Advanced Subsonic “Technology Program, NASA Ref. Publ., 1400, 1997.

    Google Scholar 

  80. Yu, F., and R. Turco, Evolution of aircraft-generated volatile particles from near to far wakes: Potential contributions to CCN/IN,“ Geophys. Res. Lett, 26,, 1999.

    Google Scholar 

  81. Schröder F. P., B. Kärcher, A. Petzold, R. Baumann, R. Busen, C. Hoell, and U. Schumann, Ultrafine aerosol particles in aircraft plumes: In-situ observations, Geophys. Res. Lett, 25, 1998.

    Google Scholar 

  82. Zhao, J.-X., and R. P. Turco, Nucleation simulations in the wake of a jet aircraft in stratospheric flight, J. Aerosol Sci, 26, 779–795, 1995.

    Article  Google Scholar 

  83. Kärcher, B., Th. Peter and R. Ottmann, Contrail formation: Homogeneous nucleation of H2SO4-H2O droplets, Geophys. Res. Lett, 22, 1501–1504, 1995.

    Article  Google Scholar 

  84. F. Yu, R. P. Turco, B. Kärcher and F. P. Schröder, On the mechanisms controlling the formation and properties of volatile particles in aircraft wakes, Geophys. Res. Lett, 25, 3839–3842 (1998).

    Article  Google Scholar 

  85. B. Kärcher, F. Yu, F. P. Schröder and R. P. Turco, Ultrafine aerosol particles in aircraft plumes: Analysis of growth mechanisms, Geophys. Res. Lett, 25, 2793–2796 (1998).

    Article  Google Scholar 

  86. Yu, F., R. P. Turco and B. Kärcher, The possible role of organics in the formation and evolution of ultrafine aircraft particles, J. Geophys. Res, 104, 4079–4087 (1999).

    Article  Google Scholar 

  87. Whitby, K. T., and B.Y.H. Liu, The electrical behavior of aerosols, in Aerosol Science, pp. 59–86, C. N. Davies, Ed., Academic Press, New York, 1966.

    Google Scholar 

  88. W. A. Hoppel and G. M. Frick, Aerosol Sci. Tech 5, 1 (1986).

    Article  Google Scholar 

  89. B. Karcher, R. P. Turco, F. Yu, R. C. Miake-Lye, M. Y. Danilin, D. K. Weisenstein and R. Busen: “Towards a quantitative understanding of new particle formation in aircraft exhaust plumes,” Nature, submitted (2000).

    Google Scholar 

  90. F. Arnold et al., Geophys. Res. Lett, 25, 2137 (1998).

    Article  Google Scholar 

  91. Arnold, F., et al., Detection of massive negative chemiions in the exhaust plume of a jet aircraft in flight, Geophys. Res. Lett, 26, 1577 (1999).

    Article  Google Scholar 

  92. Curtius et al. Geophys. Res. Lett, 26, (1999).

    Google Scholar 

  93. Turco, R. P., J.-X. Zhao and F. Yu, Tropospheric sulfate aerosol formation via ion-ion recombination, paper presented at Joint AGU/Air and Waste Management Assoc. Conf. on Visual Air Quality, Aerosols, and Global Radiation, Bartlett New Hampshire, Sept. 9–12, 1997.

    Google Scholar 

  94. Reiter, R., Fields, Currents and Aerosols in the Lower Troposphere, Chpt. 5, Atmospheric Radioactivity and Ionization of Air, Scientific Research Reports, Natural Sciences Series, Vol. 71, National Science Foundation, Washington, D.C., Amerind Publ. Co, New Dehli, 1985.

    Google Scholar 

  95. Arnold, F., J. Schneider, K. Gollinger, H. Schlager, P. Schulte, D. E. Hagen, P. D. Whitefield and P. van Velthoven, Observations of upper tropospheric sulfur dioxide-and acetone-pollution: Potential implications for hydroxyl radical and aerosol formation, Geophys. Res. Lett, 24, 57–60, 1997.

    Article  Google Scholar 

  96. Fehsenfeld, F. C., I. Dotan, D. L. Albritton, C. J. Howard and E. E. Ferguson, Stratospheric positive ion chemistry of formaldehyde and methanol, J. Geophys. Res, 83, 1333–1336, 1978.

    Article  Google Scholar 

  97. Huertas, M. L., A. M. Marty and J. Fontan, On the nature of positive ions of tropospheric interest and on the effect of polluting organic vapors, J Geophys. Res, 79, 1737–1743, 1974.

    Article  Google Scholar 

  98. Cole, R. K., and E. T. Pierce, Electrification in the Earth’s atmosphere for altitudes between 0 and 100 kilometers, J. Geophys. Res, 70, 2735–2749, 1965.

    Article  Google Scholar 

  99. Bering, E.A., III, A.A. Few & J.R. Benbrook, The global electric circuit, Phys.Today, pp. 24–30, October, 1998.

    Google Scholar 

  100. Huertas, M. L., A. M. Marty, J. Fontan, I. Alet and G. Duffa, Measurement of mobility and mass of atmospheric ions, Aerosol Sci, 2, 145–150, 1971.

    Article  Google Scholar 

  101. Rosen, J. M., D. J. Hofmann, W. Gringel, J. Berlinski, S. Michnowski, Y. Morita, T. Ogawa and D. Olson, Results of an international workshop on atmospheric electrical measurements, JGR, 87, 1219–1227, 1982.

    Article  Google Scholar 

  102. Rosen, J. M., D. J. Hofmann and W. Gringel, Measurements of ion mobility to 30 km, J. Geophys. Res, 90, 5876–5884, 1985.

    Article  Google Scholar 

  103. Dhanorkar, S., % A. K. Kamra, Measurement of mobility spectrum and concentration of all atmospheric ions with a single apparatus, J.G.R, 96, 18671–18678, 1991.

    Article  Google Scholar 

  104. Nagato, K., and T. Ogawa, Evolution of tropospheric ions observed by an ion mobility spectrometer with a drift tube, J. Geophys. Res, 103, 13917–13925, 1998.

    Article  Google Scholar 

  105. Noppel, M., Evolution of mobility spectrum of charged nanometer particles in case of vapour nucleation and condensation, J. Aerosol Sci, 26, S345–346, 1995.

    Article  Google Scholar 

  106. Svensmark, H., Influence of Cosmic Rays on Earth’s Climate, Phys.Rev.Lett. 81, 5027, 1998.

    Article  Google Scholar 

  107. Ordnance, C., W. L. Chemises, D. D. Davis, B. E. Anderson, R. F. Pustule, A. R. Bandy, D. C. Thomton, R. W. Talbot, P. Kasibhatla and C. S. Kiang, Gas-to-particle conversion of tropospheric sulfur as estimated from observations in the westem North Pacific during PEM-West B, J. Geophys. Res, 102, 28511–28538, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Turco, R.P., Yu, F. (2000). Tropospheric Aerosol Formation: Processes, Observations and Simulations. In: Zerefos, C.S., Isaksen, I.S.A., Ziomas, I. (eds) Chemistry and Radiation Changes in the Ozone Layer. NATO Science Series, vol 557. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4353-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4353-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6514-3

  • Online ISBN: 978-94-011-4353-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics