Developments in Tropospheric Chemistry

  • P. J. Crutzen
Part of the NATO Science Series book series (ASIC, volume 557)

Abstract

A brief, rather personal, overview is given of some of the major developments in atmospheric chemistry during the past 30 years with emphasis on the troposphere. Some areas for future research are indicated.

Keywords

Ozone Concentration Biomass Burning Atmospheric Chemistry Stratospheric Ozone Tropospheric Ozone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crutzen, P.J. (1996) My Life with O3, NOx, and other YXOx Compounds (Nobel Lecture), Angew. Chem. Int. Ed. Engl, 35, 1758–1777.CrossRefGoogle Scholar
  2. 2.
    Chapman, S. (1930) A theory of upper atmospheric ozone, Mem. Roy. Soc, 3, 103–125.Google Scholar
  3. 3.
    Benson, S.W., and A.E. Axworthy (1965) Reconsiderations of the rate constants from the thermal decomposition of ozone, J. Chem. Phys, 42, 2614.CrossRefGoogle Scholar
  4. 4.
    Bates, D.R., and M. Nicolet (1959) The photochemistry of atmospheric water vapour, J. Geophys. Res, 55, 301.CrossRefGoogle Scholar
  5. 5.
    McGrath, W.D., and R.G.W. Norrish (1960) Studies of the reaction of excited oxygen atoms and molecules produced in the flash photolysis of ozone, Proc. Roy. Soc, A 254, 317.Google Scholar
  6. 6.
    Norrish, R.G.W., and R.P. Wayne (1965) The photolysis of ozone by ultraviolet radiation. “The photolysis of ozone mixed with certain hydrogen-containing substances. Proc. Roy. Soc. London, A 288, 361.CrossRefGoogle Scholar
  7. 7.
    Hampson, J. (1965) Chemiluminescent emission observed in the stratosphere and mesosphere, in “Les problèmes météorologiques de la stratosphère et de la mésosphère”, p. 393. Presses universitaires de France, Paris.Google Scholar
  8. 8.
    Hunt, B.G. (1966) Photochemistry of ozone in a moist atmosphere, J. Geophys. Res, 71, 1385.CrossRefGoogle Scholar
  9. 9.
    Crutzen, P.J. (1969) Determination of parameters appearing in the “dry” and “wet” photochemical theories for ozone in the stratosphere, Tellus, 21, 368–388.CrossRefGoogle Scholar
  10. 10.
    Crutzen, P.J. (1970) The influence of nitrogen oxides on the atmospheric ozone content, Q.J.R. Meteorol. Soc, 96, 320–325.CrossRefGoogle Scholar
  11. 11.
    Crutzen, P.J. (1971) Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmosphere, J. Geophys. Res, 76, 7311.CrossRefGoogle Scholar
  12. 12.
    Johnston, H. (1971) Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust, J. Geophys. Res, 173, 517.Google Scholar
  13. 13.
    Levy, H., III (1971) Normal atmosphere: Large radical and formaldehyde concentrations predicted, Science, 173, 141.CrossRefGoogle Scholar
  14. 14.
    Prinn, R.G. et al. (1995) Atmospheric trends and lifetime of trichloroethane and global average hydroxyl radical concentrations based on 1978–1994 ALE/GAGE measurements, Science, 269, 187.CrossRefGoogle Scholar
  15. 15.
    Crutzen, P.J. (1973) A discussion of the chemistry of some minor constituents in the stratosphere and troposphere, Pure Appl. Geophys, 106–108, 1385.Google Scholar
  16. 16.
    Crutzen, P.J. (1974) Photochemical reactions initiated by and influencing ozone in unpolluted tropospheric air, Tellus, 26, 47.CrossRefGoogle Scholar
  17. 17.
    Howard, C.J., and K.M. Evenson (1977) Kinetics of the reaction of HO2 radicals with NO, Geophys. Res. Lett, 4, 437.CrossRefGoogle Scholar
  18. 18.
    Crutzen, P.J., and P.H. Zimmermann (1991) The changing photochemistry of the troposphere, Tellus, 43A/B, 136.Google Scholar
  19. 19.
    Woodwell, G.M., R.H. Whittaker, W.A. Reiners, G.E. Likens, C.C. Delwiche, and D.B. Botkin (1978) The biota and the world carbon budget, Science, 199, 141.CrossRefGoogle Scholar
  20. 20.
    Crutzen, P.J., and M.O. Andreae (1990) Biomass burning in the Tropics: Impact on atmospheric chemistry and biogeochemical cycles, Science, 250, 1669.CrossRefGoogle Scholar
  21. 21.
    Crutzen, P.J., A.C. Delany, J. Greenberg, P. Haagenson, L. Heidt, R. Lueb, W. Pollock, W. Seiler, A. Wartburg, and P. Zimmerman (1985) Tropospheric chemical composition measurements in Brazil during the dry season, J. Atmos. Chem, 2, 233.CrossRefGoogle Scholar
  22. 22.
    Amazon Boundary Layer Experiment (ABLE 2A) (1988) Dry season 1985, Collection of 24 papers, J. Geophys. Res, 93(D2), 1349–1624.Google Scholar
  23. 23.
    Andreae, M.O. et al.(1992)Ozone and Aitken nuclei over equatorial Africa: Airborne observations during DECAFE 88 J. Geophys. Res, 97 6137CrossRefGoogle Scholar
  24. 24.
    Fishman, J., K. Fakhruzzaman, B. Cros, and D. Nyanga (1991) Identification of widespread pollution in the southern hemisphere deduced from satellite analyses, Science, 252, 1693.CrossRefGoogle Scholar
  25. 25.
    FOS/DECAFE 91 Experiment (1995), Collection of 13 papers in J. Atmos. Chem, 22, 1–239, 1995.CrossRefGoogle Scholar
  26. 26.
    Zander, R., Ph. Demoulin, D.H. Ehhalt, U. Schmidt, and C.P. Rinsland (1989) Secular increases in the total vertical abundances of carbon monoxide above central Europe since 1950, J. Geophys. Res, 94, 11021.CrossRefGoogle Scholar
  27. 27.
    Zander, R., Ph. Demoulin, D.H. Ehhalt, and U. Schmidt (1989) Secular increases of the vertical abundance of methane derived from IR solar spectra recorded at the Jungfraujoch station, J. Geophys. Res, 94, 11029.CrossRefGoogle Scholar
  28. 28.
    Khalil, M.A.K., and R.A. Rasmussen (1993) Global decrease of atmospheric carbon monoxide, Nature, 370, 639.CrossRefGoogle Scholar
  29. 29.
    Novelli, P.C., K.A. Masario, P.P. Tans, and P.M. Lang (1994) Recent changes in atmospheric carbon monoxide, Science, 2631587.CrossRefGoogle Scholar
  30. 30.
    Kley, D., P.J. Crutzen, H.G.J. Smit, H. Vömel, S. Oltmans, H. Grassi, and V. Ramanathan (1996) Observations of near-zero ozone concentrations over the convective Pacific: Effects on air chemistry, Science, 274, 230–233.CrossRefGoogle Scholar
  31. 31.
    Barrie, L.A., J.W. Bottenheim, R.C. Schnell, P.J. Crutzen, and R.A. Rasmussen (1988) Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere, Nature, 334, 138.CrossRefGoogle Scholar
  32. 32.
    Hausmann, M., and U. Platt (1994) Spectroscopic measurement of bromine oxide and ozone in the high Arctic during Polar Sunrise Experiment 1992, J. Geophys. Res, 99, 25399.CrossRefGoogle Scholar
  33. 33.
    Sander, R., and P.J. Crutzen (1996) Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea, J. Geophys. Res,101, 9121–9138.CrossRefGoogle Scholar
  34. 34.
    Vogt, R., P.J. Crutzen, and R. Sander (1996) A new mechanism for halogen release from seasalt-salt aerosol in the remote marine boundary layer, Nature, 383, 327–330.CrossRefGoogle Scholar
  35. 35.
    Ayers, G.P., R.W. Gillett, J.M. Cainey, and A.L. Dick (1999) Chloride and Bromide Loss from Sea-Salt Particles in Southern Ocean Air, J. Minos. Chem, 33, 299–319.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • P. J. Crutzen
    • 1
  1. 1.Max-Planck-Institute for ChemistryMainzGermany

Personalised recommendations