Advertisement

Classical Hardy’s and Carleman’s Inequalities and Mixed Means

  • Aleksandra Čižmešija
  • Josip Pečarić
Chapter
Part of the Mathematics and Its Applications book series (MAIA, volume 517)

Abstract

The aim of this paper is to present an alternative approach to the classical discrete and integral Hardy’s and Carleman’s inequalities, considering their natural connection with discrete and integral power means and giving opportunity for their various generalizations. Following that idea, mixed means corresponding to chosen power means are introduced and relations between two different mixed means of the same type are established. A complete survey of recently proven mixed-means inequalities is given, accompanied with the basic ideas used in their proofs, and it is shown how can these relations be applied as a technique for deriving Hardy’s and Carleman’s inequalities. Further, two multivariable generalizations of reviewed one-dimensional integral results are given, one of them to balls and the other to cells in R n . Moreover, the best possible constants for all obtained inequalities are discussed.

Keywords

Positive Real Number Integral Power Classical Inequality Hardy Type Inequality Positive Measurable Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. G. De Bruijn, Carleman’s inequality for finite series, Nederl. Akad. Wet. Amsterdam Proc. Ser. A. 44 (1963), 505–514 (= Indagationes Mathematicae 34).Google Scholar
  2. 2.
    P. S. Bullen, A Chapter on Inequalities, Math. Medley 21, No. 2 (1993), 48–69.MathSciNetzbMATHGoogle Scholar
  3. 3.
    P. S. Bullen, Inequalities due to T. S. Nanjundiah, from Milovanović, G. V. (ed.) Recent progress in inequalities. Dedicated to Prof. Dragoslav S. Mitnnović, Kluwer Academic Publishers, 1998, 203–211.Google Scholar
  4. 4.
    P. S. Bullen, D. S. Mitrinović and P. M. Vasić, Means and Their Inequalities, Reidel Publishing Co. Dordrecht-Boston, 1988.zbMATHGoogle Scholar
  5. 5.
    T. Carleman, Sur les fonctions quasi-analytiques, Conférences faites au cinquieme congres des mathematiciens scandinaves, Helsinki (1923), 181–196.Google Scholar
  6. 6.
    M. Christ and L. Grafakos, Best constants for two nonconvolution inequalities, Proc. Amer. Math. Soc. 123, No. 6 (1995), 1687–1693.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    J. A. Cochran and C.-S. Lee, Inequalities related to Hardy’s and Heinig’s, Math. Proc. Cambridge Phil. Soc. 96 (1984), 1–7.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    A. Čižmešija and J. Pečarić, Mixed means and Hardy’s inequality, Math. In-equal. Appl. 1, No. 4 (1998), 491–506.zbMATHGoogle Scholar
  9. 9.
    A. Čižmešija, J. Pečarić and I. Peric, Mixed Means and Inequalities of Hardy and Levin-Cochran-Lee Type for Multidimensional Balls, to appear in Proc. Amer. Math. Soc.Google Scholar
  10. 10.
    A. Čižmešija and J. Pečarić, Multidimensional Mixed Means and Inequalities of Hardy and Levin-Cochran-Lee Type, submitted.Google Scholar
  11. 11.
    P. Drábek, H. P. Heinig and A. Kufner, Higher dimensional Hardy inequality, Int. Ser. Num. Math. 123 (1997), 3–16.Google Scholar
  12. 12.
    R. L. Graham, D. E. Knuth and O. Patashnik, Concrete mathematics: a foundation for computer science, Addison-Wesley Publishing Co., 1989.Google Scholar
  13. 13.
    G. H. Hardy, Note on a theorem of Hilbert, Math. Zeitschr. 6 (1920), 314–317.zbMATHCrossRefGoogle Scholar
  14. 14.
    G. H. Hardy, Notes on some points in the integral calculus (LXIV), Messenger of Math. 57 (1928), 12–16.Google Scholar
  15. 15.
    G. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Esecond edition, Cambridge University Press, Cambridge, 1967.Google Scholar
  16. 16.
    F. Holland, On a mixed arithmetic-mean, geometric-mean inequality, Mathematics Competitions 5 (1992), 60–64.Google Scholar
  17. 17.
    K. Kedlaya, Proof of a Mixed Arithmetic-Mean, Geometric-Mean Inequality, Amer. Math. Monthly, 101 (1994), 355–357.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    K. Kedlaya, A Weighted Mixed-Mean Inequality, Amer. Math. Monthly, 106 (1999), 355–358.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    K. Knopp, Über Reihen mit positiven Gliedern, J. Lond. Math. Soc. 3 (1928), 205–211.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    V. Levin, O neravenstvah III: Neravenstva, vypolnjaemie geometričeskim srednim neotricatel’noi funkcii, Math. Sbornik 4 (46) (1938), 325–331.Google Scholar
  21. 21.
    E. R. Love, Inequalities related to those of Hardy and of Cochran and Lee, Math. Proc. Cambridge Phil. Soc. 99 (1986), 395–408.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    T. Matsuda, An Inductive Proof of a Mixed Arithmetic-Geometric Mean Inequality, Amer. Math. Monthly 102 (1995), 634–637.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, 1970.Google Scholar
  24. 24.
    D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, 1991.Google Scholar
  25. 25.
    B. Mond and J. Pečarić, A Mixed means Inequality, Austral. Math. Soc. Gazette 23 (1996), No. 2, 67–70.zbMATHGoogle Scholar
  26. 26.
    B. Mond and J. Pečarić, A Mixed Arithmetic-Mean-Harmonic-Mean Matrix Inequality, Linear Algebra Appl. 237/238 (1996), 449–454.CrossRefGoogle Scholar
  27. 27.
    B. Mond and J. Pečarić, Mixed means inequalities for positive linear operators, Austral. Math. Soc. Gazette 23 (1996), No. 5, 198–200.zbMATHGoogle Scholar
  28. 28.
    T. S. Nanjundiah, Inequalities relating to arithmetic and geometric means I, II, J. Mysore Univ. Sect. B6 (1946), 63–77, 107-113.MathSciNetGoogle Scholar
  29. 29.
    T. S. Nanjundiah, Sharpening some classical inequalities, Math. Student 20 (1952), 24–25.Google Scholar
  30. 30.
    B. Opic and A. Kufner, Hardy-type inequalities, Longman Scientific & Technical, 1990.Google Scholar
  31. 31.
    B. G. Pachpatte, On Multivariate Hardy Type Inequalities, Analele Stiintifice ale Univ.” AL.I.CUZA” Iasi, Tom. XXXVIII, s.I.a, Matem., 1992, f.3, 355–361.Google Scholar
  32. 32.
    J. Pečarić and K. B. Stolarsky, Carleman’s inequality: history and new generalizations, manuscript.Google Scholar
  33. 33.
    C.D. Tarnavas and D. D. Tarnavas, An Inequality for Mixed Power Means, Math. Inequal. Appl. 2, No. 2 (1999), 175–181.MathSciNetzbMATHGoogle Scholar
  34. 34.
    G.-S. Yang and Y.-J. Lin, On companion inequalities related to Heinig’s, Tamkang Journal of Math. 22 (1991), No. 4, 313–322.MathSciNetzbMATHGoogle Scholar
  35. 35.
    H. S. Wilf, On finite sections of the classical inequalities. Nederl. Akad. Wet. Amsterdam Proc. Ser. A. 65 (1962), 340–342 (= Indagationes Mathematicae 24).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Aleksandra Čižmešija
    • 1
  • Josip Pečarić
    • 2
  1. 1.Department of MathematicsUniversity of ZagrebZagrebCroatia
  2. 2.Faculty of Textile TechnologyUniversity of ZagrebZagrebCroatia

Personalised recommendations