Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 85))

Abstract

The trend of power sources, in accordance with the shrinkage in the size of electronic devices, shifted from city line to regular batteries, and final goal may be miniature power sources. By preparing electrochemical cells with a thin-film architecture, extensive opportunities arise for their utilization in extremely diverse fields of technology, where small dimensions, high specific-energy ratings, reliable performance and long shelf lives are required. The use of thin film technology may offer the following main advantages: (i) thin films are well adapted for device design, (ii) the thinning of layers gives a lower resistance in the transverse direction in the case of poorly semiconducting materials, (iii) the formation of a thin layer of electrolyte allows us to use glassy materials even with a low ionic conductivity, (iv) some of the main difficulties in the behavior of the electrolyte-electrode interface can be avoided, (v) thin film batteries are manufactured by the same technique as currently used in the microelectronics industry, and (vi) the microbattery is constructed in almost any two-dimensional shape. The counterpart in the fabrication of microbatteries consists in many difficulties which are discussed in the following.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. see for example: Sator, A., (1952) C. R. Acad. Sci. Paris 234, 2283. One of the prior thin-film microbattery, which consisted in the Pb/CljPb/ClAg/Ag electrochemical chain, delivered a cell voltage of 0.44 V and has been cycled 7 times.

    Google Scholar 

  2. Kennedy, J.H. (1977) Thin Solid Films 43, 41.

    Article  Google Scholar 

  3. Julien, C. (1994) in G. Pistoia (ed.) Lithium Batteries: New Materials, Development and Perspectives, Elsevier, Amsterdam, p. 167.

    Google Scholar 

  4. Julien, C. and Nazri, G.A. (1994) Solid State Batteries: Materials Design and Optimization, Kluwer, Boston.

    Book  Google Scholar 

  5. Jones, S.D., Akridge, J.R., and Shokoohi, F.K. (1994) Solid State Ionics 69, 357.

    Article  Google Scholar 

  6. Julien, C. and Balkanski, M. (1990) in J.R. Akridge and M. Balkanski (eds.), Solid State Microbatteries, NATO-ASI Series, Ser. B217, Plenum, New York, p. 233.

    Google Scholar 

  7. Liang, C.C., Epstein, J., and Boyle, G.H. (1969) J. Electrochem. Soc. 116, 1452.

    Article  Google Scholar 

  8. Rea, J.R. and Davis, A. (1981) US Patent 4, 299, 890.

    Google Scholar 

  9. Kanehori, K., Matsumoto, K,. Miyauchi, K, and Kudo, T. (1983) Solid StateIonics 9/10, 1455.

    Google Scholar 

  10. Kanehori, K, Ito, Y., Kirino, F., Miyauchi, K, and Kudo, T. (1986) Solid State Ionics 18/19, 818.

    Article  Google Scholar 

  11. Kirino, F., Ito, Y., Miyauchi, K, and Kudo, T. (1986) Nippon Kagaku Kaishi 3, 445.

    Article  Google Scholar 

  12. Wakihara, M., Uchida, T., Morishita, T., Wakamatsu, H., and M. Taniguchi, M. (1987) J. Power Sources 20, 199.

    Article  Google Scholar 

  13. Upton, J.R. Owen, J.R., Tufton, P.J., Benjamin, J.D., Steele, B.C.H., and Rudkin, R.A. (1988) Solid State Ionics 28/30, 1486.

    Article  Google Scholar 

  14. Jourdaine, L., Souquet, J.L., Delord, V., and Ribes, M. (1988) Solid State Ionics 28/30, 1490.

    Article  Google Scholar 

  15. Meunier, G., Dormoy, R., and Levasseur, A. (1989) Mater. Sci. Eng. 53, 19.

    Article  Google Scholar 

  16. Balkanski, M., Julien, C., and Emery, J. Y. (1989) J. Power Sources 26, 615.

    Article  Google Scholar 

  17. Bates, J.B., Dudney, N.J., Chu, Y., and Mazumdar, P. (1989) Mat. Res. Soc. Symp. Proc. 135, 143(1989).

    Article  Google Scholar 

  18. Ohtsuka, H. and Yamaki, J. (1989) Solid State Ionics 35, 201 (1989).

    Article  Google Scholar 

  19. Ohtsuka, H., Okada, S., and Yamaki, J. (1990) Solid State Ionics 40/41, 964.

    Article  Google Scholar 

  20. Jones, S.D. and Akridge, J.R. (1992) Solid State Ionics 53-56, 628.

    Article  Google Scholar 

  21. Jones, S.D. and Akridge, J.R. (1993). Power Sources 43/44, 505.

    Article  Google Scholar 

  22. Huang, X.L., Chen, L., and Schoonmann, J. (1993) J. Power Sources 43/44, 487.

    Article  Google Scholar 

  23. Bates, J.B., Dudney, N.J., Gruzalski, G.R., Zuhr, R.A., Choudhury, A., Luck, C.F., and Roberson, J.D. (1993) J. Power Sources 43/44, 103.

    Article  Google Scholar 

  24. Shokoohi, F.K., Tarascon, J.M., and Wilkens, B.J. (1991) Appl. Phys. Lett. 59, 1260.

    Article  Google Scholar 

  25. Julien, C. and Gorenstein, A. (1995) Power Sources 15, 373.

    Google Scholar 

  26. Julien, C., Yebka, B., and Guesdon, J.P. (1995) Ionics 1, 316.

    Article  Google Scholar 

  27. Julien, C., Massot, M., Dzwonkowski, P., Emery, J., and Balkanski, M. (1989) Infrared Phys. 29, 769.

    Article  Google Scholar 

  28. Oi, T. (1980) Appl. Phys. Lett. 37, 244.

    Article  Google Scholar 

  29. Eddrief, M., Dzwonkowski, P., Julien, C., and Balkanski, M. (1991) Solid State Ionics 45, 77.

    Article  Google Scholar 

  30. Bates, J.B., Dudney, N.J., Gruzalski, G.R., Zuhr, R.A., Choudhury, A., Luck, C.F., and Roberson, J.D. (1992) Solid State Ionics 53/56, 647.

    Article  Google Scholar 

  31. Von Alpen, U. and Bell, M.F. (1979) in P. Vashishta, J.N. Mundy, and G.K. Shenoy (eds.), Fast Ion Transport in Solids, ed. by North-Holland, Amsterdam, p. 463.

    Google Scholar 

  32. Weppner, W. (1991) J. Electrochem. Soc. 138, 146C.

    Google Scholar 

  33. Julien, C., Hussain, O.M., El-Farh, L., and Balkanski, M. (1992) Solid State Ionics 53/56, 400.

    Article  Google Scholar 

  34. Julien, C., El-Farh, L., Balkanski, M., Hussain, O.M., and Nazri, G.A. (1993) Appl. Surf. Sci. 65/66, 325.

    Article  Google Scholar 

  35. Julien, C., Guesdon, J.P., Gorenstein, A., Khelfa, A., and Ivanov, I. (1995) J. Mater. Sci. Lett. 14, 934.

    Article  Google Scholar 

  36. Gorenstein, A., Khelfa, A., Guesdon, J.P., Nazri, G.A., Hussain, O.M., Ivanov, I., and Julien, C. (1995) Solid State Ionics 76, 133.

    Article  Google Scholar 

  37. Baudry, P., Aegerteer, M.A., Deroo, D., and Valla, B. (1991) J. Electrochem. Soc. 138, 460.

    Article  Google Scholar 

  38. Bates, J.B., Gruzalski, G.R., Dudney, N.J., Luck, C.F., and Yu, X. (1994) Solid State Ionics 70/71, 619.

    Article  Google Scholar 

  39. Andersson, A.M., Granqvist, C.G., and Stevens, J.R. (1989) Appl. Optics 28, 3295.

    Article  Google Scholar 

  40. Julien, C., Haro-Poniatowski, E., Camacho-Lopez, M.A., Escobar-Alarcon, L., and Jimenez-Jarquin, J. (1999) Mater. Sci. Eng. B 65, 100.

    Article  Google Scholar 

  41. Camacho-Lopez, M.A., Escobar-Alarcon, L., Haro-Poniatowski, E., and Julien, C. (1999) Ionics, in press.

    Google Scholar 

  42. Karagounis, V., Lun, L., and Liu, C.C. (1986) IEEETrans. Biomed. Eng. 33, 108.

    Article  Google Scholar 

  43. Bates, J.B. (1995) in by D. Bloor, R.J. Brook, M.C. Flemings, and S. Mahajan (eds.) Encyclopedia of Advanced Materials, Pergamon, Oxford.

    Google Scholar 

  44. Owens, B.B. and Bates, J.B. (1994) Electrochem. Soc. Meeting Proc., vol. 94-2, Ext. Abstr. 110, p. 174.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Julien, C. (2000). Lithium Microbatteries. In: Julien, C., Stoynov, Z. (eds) Materials for Lithium-Ion Batteries. NATO Science Series, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4333-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4333-2_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6651-5

  • Online ISBN: 978-94-011-4333-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics