Skip to main content

Retention of 100 eV Tritium in Tungsten at High Fluxes

  • Chapter
Hydrogen Recycling at Plasma Facing Materials

Part of the book series: NATO Science Series ((NAII,volume 1))

Abstract

Tungsten ideally suited for many fusion applications due to its high threshold for sputtering as well as its very high melting point. If tungsten is to be used as a plasma-facing material in a fusion reactor, it is necessary to know its hydrogen isotope recycling and retention characteristics. The Tritium Plasma Experiment (TPE) has been used in a research program to determine the retention of tritium in 99.95% pure tungsten exposed to high fluxes of 100 eV tritons. Plasma exposures were performed at a temperature of 623 °K. The flux of ions ranged from 1021 to 1022 ions/m2/sec. After exposure to the tritium plasma, the samples were transferred to an outgassing system containing an ionization chamber for detection of the released tritium. The retention results closely followed a power law. Modeling was performed on the retention as a function of flux and the outgassing characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Tomabechi for the ITER Team, J. Nucl. Mater. 179-181 (1991) 1173

    Article  CAS  Google Scholar 

  2. G. M. Kalanin, J. Nucl. Mater 179-181 (1991) 1193

    Article  Google Scholar 

  3. V. Kh. Alimov, B. M. U. Scherzer, J. Nucl. Mater. 240 (1996) 75

    Article  CAS  Google Scholar 

  4. J. W. Davis, A. A. Haasz, J. Nucl. Mater. 223 (1995) 312

    Article  CAS  Google Scholar 

  5. R. Causey, K. Wilson, T. Venhaus, W. R. Wampler, J. Nucl. Mater. 266-269 (1999) 467

    Article  CAS  Google Scholar 

  6. H. Eleveld and A. van Veen, J. Nucl. Mater. 191-194 (1992) 433

    CAS  Google Scholar 

  7. A. A. Pisarev, A. V. Varava, S. K. Zhdanov, J. Nucl. Mater. 220-222 (1995) 926

    Article  CAS  Google Scholar 

  8. V. V. Bandurko and V. A. Kurnaev, Vacuum, 44 (1993) 937

    Article  CAS  Google Scholar 

  9. A. Van Veen, H. A. Filius, J. De Vries, K. R. Bijkerk, G. J. Rozing, J. Nucl. Mater., 155-157(1998)1113

    Article  Google Scholar 

  10. C. Garcia-Rosales, P.

    Google Scholar 

  11. R. A. Causey, D. Buchenauer, W. Harbin, D. Taylor, and R. Anderl, Fusion Technology, 28(3) (1995) p.1114

    Google Scholar 

  12. B. J. Merrill et al., TMAP4 Tritium Migration Analysis Program Code, Description and User’s Manual, INEL report, EG&G Idaho, Inc., EGG-FSP-10315

    Google Scholar 

  13. A. A. Pisarev, S. K. Zhdanov, and O. V. Ogorodnikova, J. Nucl. Mater. 211 (1994) 127

    Article  CAS  Google Scholar 

  14. B. L. Doyle and D. K. Brice, Radiation Effects, 89 (1985) 21

    Article  CAS  Google Scholar 

  15. R. Frauenfelder, “Solution and Diffusion of Hydrogen in Tungsten,” Journal of Vacuum Science and Technology 6 (1969) 388

    Article  CAS  Google Scholar 

  16. R. A. Anderl, D. F. Holland, and G. R. Longhurst, J. Nucl. Mat. 176 &177 (1990) 683

    Article  Google Scholar 

  17. The Stopping and Range of Ions in Solids”, by J. F. Ziegler, J. P. Biersack and U. Littmark, Pergamon Press, New York, 1985

    Google Scholar 

  18. G. R. Longhurst, R. A. Anderl, D. F. Holland, “Evidences of hydrogen trapping in tungsten an implications for plasma-facing components”, Fusion Technology 19 (1991) p. 1799

    CAS  Google Scholar 

  19. X. W. Wu and B. Y. Tong, Philos. Mag. Lett. 61 (1990) 147

    Article  CAS  Google Scholar 

  20. G. Federici, D. F. Holland, B. Esser, J. Nucl. Mater. 227 (1996) 170

    Article  CAS  Google Scholar 

  21. R. Sakamoto, T. Muroga, N. Yoshida, J. Nucl. Mater., 220-222 (1995) 819

    Article  CAS  Google Scholar 

  22. Yoshida, N. J. Nucl. Mater. 266-269 (1999) 197–206

    Article  CAS  Google Scholar 

  23. V. Kh. Alimov, I.I. Arkhipov, A. E. Gorodetsky, A. V. Markin, A. P. Zakharov, R. Kh. Zalavutdinov, Progress Report on Task 2 of Contract LF-9196, April, 1999

    Google Scholar 

  24. J. B. Condon and T. Schober, J. Nucl. Mater. 307 (1993) 1–24

    Article  Google Scholar 

  25. A. Van Veen, H. A. Filius, J. De Vries, K. R. Bijkerk, G. J. Rozing, and D. Segers, J. Nucl. Mater., 155-157 (1988) 1113

    Article  Google Scholar 

  26. N. P. Katrich and A. T. Budnikov, Zhurnal Tekhnicheskoi Fiziki, 52 (1982) 1236

    CAS  Google Scholar 

  27. F. C. Sze, R. P. Doerner, and S. Luckhardt, J. Nucl. Mater. 264 (1999) 89–98

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Venhaus, T.J., Causey, R.A. (2000). Retention of 100 eV Tritium in Tungsten at High Fluxes. In: Wu, C.H. (eds) Hydrogen Recycling at Plasma Facing Materials. NATO Science Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4331-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4331-8_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6630-0

  • Online ISBN: 978-94-011-4331-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics