Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 559))

Abstract

Conductance of a quantum dot in the Coulomb blockade regime is discussed. At moderately low temperatures, the thermally-assisted transport of electrons through the dot gives way to elastic co-tunneling [1]. The amplitude of the elastic co-tunneling is sensitive to the specific structure of electron wave functions in a given sample. The conductance exhibits strong mesoscopic fluctuations [2]. Statistical properties of these fluctuations are reviewed in this lecture. At lower temperatures, conductance through a dot is altered by the Kondo effect, if the number of electrons on the dot is odd. We describe the universal features of the Kondo conductance [3, 4], and briefly discuss the manifestations of this effect in the limiting cases of weak and strong [5] dot-lead coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. V. Averin and Yu. N. Nazarov, Phys. Rev. Lett. 65, 2446 (1990).

    Article  ADS  Google Scholar 

  2. I. L. Aleiner and L. I. Glazman, Phys. Rev. Lett. 77, 2057 (1996).

    Article  ADS  Google Scholar 

  3. T. K. Ng and P. A. Lee, Phys. Rev. Lett. 61, 1768 (1988).

    Article  ADS  Google Scholar 

  4. L. I. Glazman and M. E. Raikh, JETP Lett. 47, 452 (1988).

    ADS  Google Scholar 

  5. L. I. Glazman, F. W. J. Hekking, and A. I. Larkin, Phys. Rev. Lett. 83, 1830 (1999).

    Article  ADS  Google Scholar 

  6. C. J. Gorter, Physica 17, 777 (1951).

    Article  ADS  Google Scholar 

  7. C. A. Neugebauer and M. B. Webb, J. Appl. Phys. 33, 74 (1962).

    Article  ADS  Google Scholar 

  8. I. Giaever and H. R. Zeller, Phys. Rev. Lett. 20, 1504 (1968);

    Article  ADS  Google Scholar 

  9. I. Giaever and H. R. Zeller, Phys. Rev. 181, 789 (1969).

    Article  ADS  Google Scholar 

  10. J. Lambe and R. C. Jaklevic, Phys. Rev. Lett. 22, 1371 (1961).

    Article  ADS  Google Scholar 

  11. R. I. Shekhter, Sov. Phys. JETP 36, 747 (1973).

    MathSciNet  ADS  Google Scholar 

  12. I. O. Kulik and R. I. Shekhter, Sov. Phys. JETP 41, 308 (1975).

    ADS  Google Scholar 

  13. R. Wilkins, E. Ben-Jacob, and R. C. Jaklevic, Phys. Rev. Lett. 63, 801 (1989).

    Article  ADS  Google Scholar 

  14. K. A. McGreer, J.-C. Wan, N. Anand, and A. M. Goldman, Phys. Rev. B 39, 12260 (1989).

    Article  ADS  Google Scholar 

  15. J.-C. Wan, K. A. McGreer, L. I. Glazman, A. M. Goldman, R.I. Shekter, Phys. Rev B 43, R9381 (1991).

    Article  ADS  Google Scholar 

  16. K. K. Likharev and T. Claeson, “Single Electronics”, Scientific American, June 1992, pp. 80–85.

    Google Scholar 

  17. T. A. Fulton and G. J. Dolan, Phys. Rev. Lett. 59, 109 (1987).

    Article  ADS  Google Scholar 

  18. L. I. Glazman and R. I. Shekhter, J. Phys. Condens. Matter. 1, 5811 (1989).

    Article  ADS  Google Scholar 

  19. P. Joyez, V. Bouchiat, D. Esteve, C. Urbina, M. H. Devoret, Phys. Rev. Lett. 79, 1349 (1997).

    Article  ADS  Google Scholar 

  20. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Adusch-Madger, U. Meirav, M. A. Kastner, Nature (London) 391, 156 (1998);

    ADS  Google Scholar 

  21. D. Goldhaber-Gordon, J. Gores, M. A. Kastner, H. Shtrikman, D. Mahalu, U. Meirav, Phys. Rev. Lett. 81, 5225 (1998);

    Article  ADS  Google Scholar 

  22. S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, Science 281, 540 (1998);

    Article  ADS  Google Scholar 

  23. S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, J. Schmid, Physica B 256–258, 182 (1998).

    Article  Google Scholar 

  24. D. Davidovic and M. Tinkham, preprint cond-mat/9905043; M. Tinkham, this issue.

    Google Scholar 

  25. M. P. A. Fisher and L. I. Glazman, in: Mesoscopic Electron Transport, ed. by L. L. Sohn, L. P. Kouwenhoven, and G. Schön, ( Kluwer Press, Netherlands, 1997 ), p. 331.

    Google Scholar 

  26. D. J. Thouless, Phys. Rev. Lett. 39, 1167 (1977).

    Article  ADS  Google Scholar 

  27. For a review, see: C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).

    Article  ADS  Google Scholar 

  28. M. L. Mehta, Random Matrices( Academic, New York, 1991 ).

    MATH  Google Scholar 

  29. B. L. Altshuler, Y. Gefen, A. Kamenev, L. S. Levitov, Phys. Rev. Lett. 78, 2803 (1997).

    Article  ADS  Google Scholar 

  30. O. Agam, N. S. Wingreen, B.L. Altshuler, D. C. Ralph, and M. Tinkham, Phys. Rev. Lett. 78, 1956 (1997).

    Article  ADS  Google Scholar 

  31. Ya. M. Blanter, Phys. Rev. B 54, 12807 (1996).

    Article  ADS  Google Scholar 

  32. Ya. M. Blanter and A. D. Mirlin, Phys. Rev. E 55, 6514 (1997).

    Article  ADS  Google Scholar 

  33. I.L. Aleiner and L. I. Glazman, Phys. Rev. B 57, 9608 (1998).

    Article  ADS  Google Scholar 

  34. I. L. Aleiner, P. W. Brouwer, and L. I. Glazman, Quantum Effects in Coulomb Blockade, manuscript in preparation.

    Google Scholar 

  35. J. M. Ziman, Principles of the Theory of Solids, (Cambridge University Press, Cambridge, 1972), p. 339.

    Google Scholar 

  36. I. Kurlyand, I. L. Aleiner, and B. L. Altshuler, cond-mat/0004205.

    Google Scholar 

  37. H. U. Baranger, D. Ullmo, and L. I. Glazman, preprint condmat/9907151.

    Google Scholar 

  38. P. W. Brouwer, Y. Oreg, and B. I. Halperin, preprint condmat/9907148.

    Google Scholar 

  39. K. A. Matveev and A. I. Larkin, Phys. Rev. Lett. 78, 3749 (1997).

    Article  ADS  Google Scholar 

  40. S. D. Berger and B. I. Halperin, Phys. Rev. B, 58, 5213 (1997).

    Article  ADS  Google Scholar 

  41. A. Mastellone, G. Falci, and R. Fazio, Phys. Rev. Lett., 80, 4542 (1998).

    Article  ADS  Google Scholar 

  42. Ya. M. Blanter, A. D. Mirlin, and B. A. Muzykantskii, Phys. Rev. Lett. 78, 2449 (1997).

    Article  ADS  Google Scholar 

  43. D. V. Averin and A. A. Odintsov, Phys. Lett. A 140, 251 (1989).

    Article  ADS  Google Scholar 

  44. A. A. Abrikosov, Fundamentals of the Theory of Metals, ( North-Holland, Amsterdam, 1988 ) 620 p.

    Google Scholar 

  45. J. A. Folk, S. R. Patel, S. F. Godijn, A. G. Huibers, S. M. Cronenwett, C. M. Marcus, K. Campman, A. C. Gossard et al., Phys. Rev. Lett. 76, 1699 (1996).

    Article  ADS  Google Scholar 

  46. A. Kaminski, I. L. Aleiner and L. I. Glazman, Phys. Rev. Lett. 81, 685 (1998).

    Article  ADS  Google Scholar 

  47. S. M. Cronenwett, S. R. Patel, C. M. Marcus, K. Campman, A. C. Gossard, Phys. Rev. Lett. 79, 2312 (1997).

    Article  ADS  Google Scholar 

  48. J. Kondo, Prog. Theor. Phys. 32, 37 (1964).

    Article  ADS  Google Scholar 

  49. P. W. Anderson, Phys. Rev. 124, 41 (1961).

    Article  MathSciNet  ADS  Google Scholar 

  50. Ph. Nozières and A. Blandin, J. de Physique 41, 193 (1980).

    Article  Google Scholar 

  51. F. D. M. Haldane, Phys. Rev. Lett. 40, 416 (1979).

    Article  ADS  Google Scholar 

  52. T. A. Costi, A. C. Hewson, and V. Zlatic, J. Phys. Condens. Matter 6, 2519 (1994).

    Article  ADS  Google Scholar 

  53. P. Nozières, J. Low Temp. Phys. 17, 31, 1974.

    Article  ADS  Google Scholar 

  54. J. Appelbaum, Phys. Rev. Lett. 17, 91 (1966);

    Article  ADS  Google Scholar 

  55. P. W. Anderson, Phys. Rev. Lett. 17, 95 (1966);

    Article  ADS  Google Scholar 

  56. J. M. Rowell, in Tunneling Phenomena in Solids, edited by E. Burstein and S. Lundquist ( Plenum, New York, 1969 ), p. 385.

    Chapter  Google Scholar 

  57. K. A. Matveev, Phys. Rev. B 51, 1743 (1995).

    Article  ADS  Google Scholar 

  58. A. Furusaki and K. A. Matveev, Phys. Rev. B 52, 16676 (1995)

    Article  ADS  Google Scholar 

  59. I. L. Aleiner and L. I. Glazman, Phys. Rev. B 57, 9608 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Glazman, L.I. (2000). Mesoscopic Fluctuations of Co-Tunneling and Kondo Effect in Quantum Dots. In: Kulik, I.O., Ellialtioğlu, R. (eds) Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics. NATO Science Series, vol 559. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4327-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4327-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6626-3

  • Online ISBN: 978-94-011-4327-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics