Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 559))

Abstract

In this chapter we explore the connection between mesoscopic physics and quantum computing. After giving a bibliography providing a general introduction to the subject of quantum information processing, we review the various approaches that are being considered for the experimental implementation of quantum computing and quantum communication in atomic physics, quantum optics, nuclear magnetic resonance, superconductivity, and, especially, normal-electron solid state physics. We discuss five criteria for the realization of a quantum computer and consider the implications that these criteria have for quantum computation using the spin states of single-electron quantum dots. Finally, we consider the transport of quantum information via the motion of individual electrons in mesoscopic structures; specific transport and noise measurements in coupled quantum dot geometries for detecting and characterizing electron-state entanglement are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ekert, “Quantum Computation,” in Atomic Physics 14, 14th International Conference on Atomic Physics, Boulder, CO, 1994 (AIP Conference Proceedings 323, AIP Press, New York, 1995), eds. D. J. Wineland, C. E. Wieman, and S. J. Smith, p. 450; see http://eve.physics.ox.ac.uk/NewWeb/Publications/olditp.htm

  2. A. Ekert and R. Jozsa, Rev. Mod. Phys. 68, 733 (1996), and Ref. [1]

    MathSciNet  Google Scholar 

  3. C. H. Bennett, Physics Today 48(10), 24 (1995).

    Article  Google Scholar 

  4. D. P. DiVincenzo, Proc. R. Soc. London A 454, 261 (1998); quantph/9705009.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. A. Barenco, Contemp. 37, 375 (1996).

    Article  ADS  Google Scholar 

  6. A. Steane, Rep. Prog. Phys. 61, 117 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  7. C. H. Bennett and P. W. Shor, IEEE Trans. Info. Theory 44, 2724 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  8. D. P. DiVincenzo and D. Loss, J. Magn. Mag. Matl. 200, 202 (1999); cond-mat/9901137.

    Article  ADS  Google Scholar 

  9. D. P. DiVincenzo, in Mesoscopic Electron Transport, eds. L. Sohn, L. Kouwenhoven, and G. Schön (Vol. 345, NATO ASI Series E, Kluwer, 1997), p. 657 (cond-mat/9612126);

    Google Scholar 

  10. D. P. DiVincenzo, Science 270, 255 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. D. P. DiVincenzo and D. Loss, Super-lattices and Microstructures 23, 419 (1998).

    Article  ADS  Google Scholar 

  12. J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).

    Article  ADS  Google Scholar 

  13. T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 75, 3788 (1997).

    Article  ADS  Google Scholar 

  14. S. J. van Enk, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 78, 4293 (1997).

    Article  ADS  Google Scholar 

  15. G. K. Brennan et al., Phys. Rev. Lett. 82, 1060 (1999), quantph/9806021

    Article  Google Scholar 

  16. D. Jaksch et al., Phys. Rev. Lett. 82, 1975 (1999), quant-ph/9810087.

    Article  ADS  Google Scholar 

  17. I. L. Chuang, N. A. Gershenfeld and M. Kubinec, Phys. Rev. Lett. 80, 3408 (1998).

    Article  ADS  Google Scholar 

  18. D. Cory, A Fahmy, and T. Havel, Proc. Natl. Acad. Sci. USA 94, 1634 (1997).

    Article  ADS  Google Scholar 

  19. P. M. Platzman and M. I. Dykman, Science 284, 1967 (1999).

    Article  Google Scholar 

  20. D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998); condmat/9701055.

    Article  ADS  Google Scholar 

  21. B. Kane, Nature 393, 133 (1998).

    Article  ADS  Google Scholar 

  22. R. Vrijen et al., “Electron spin resonance transistors for quantum computing in silicon-germanium heterostructures,” submitted to Phys. Rev. A; quant-ph/9905096.

    Google Scholar 

  23. P. W. Brouwer et al., cond-mat/9907148; H. U. Baranger et al., cond-mat/9907151; but, see P. Jacquod and A. D. Stone, condmat/9909313.

    Google Scholar 

  24. J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998).

    Article  ADS  Google Scholar 

  25. G. Burkard, D. Loss and D. P. DiVincenzo, Phys. Rev. B 59, 2070 (1999); cond-mat/9808026.

    Article  ADS  Google Scholar 

  26. D. G. Austing, T. Honda, K. Muraki, Y. Tokura and S. Tarucha, Physica B 249–251, 206 (1998).

    Article  ADS  Google Scholar 

  27. R. J. Luyken, A. Lorke, M. Haslinger, B. T. Miller, M. Fricke, J. P. Kotthaus, G. Medeiros-Ribiero and P. M. Petroff, preprint.

    Google Scholar 

  28. G. Burkard, G. Seelig and D. Loss, cond-mat/9910105.

    Google Scholar 

  29. D. Gottesman, “quant-Tolerant Quantum Computation with Local Gates”, quant-ph/9903099.

    Google Scholar 

  30. G. Burkard, D. Loss, D. P. DiVincenzo, and J. A. Smolin, Phys. Rev. B 60, 11404 (1999); cond-mat/9905230.

    Article  ADS  Google Scholar 

  31. L. Kouwenhoven and C. Marcus, private communcation.

    Google Scholar 

  32. E. L. Ivchenko, A. A. Kiselev and M. Willander, Solid State Comm. 102, 375 (1997).

    Article  ADS  Google Scholar 

  33. A. A. Kiselev, E. L. Ivchenko and U. Rössler, Phys. Rev. B 58, 16353 (1998).

    Article  ADS  Google Scholar 

  34. D. Bacon, J. Kempe, D. A. Lidar and K. B. Whaley, “Universal fault-tolerant computation on decoherence-free subspaces”, quantph/9909058.

    Google Scholar 

  35. K. Wago, D. Botkin, C. S. Yannoni and D. Rugar, Phys. Rev. B 57, 1108 (1998), and references therein.

    Article  ADS  Google Scholar 

  36. G. Berman et al., quant-ph/9909033.

    Google Scholar 

  37. D. P. DiVincenzo, J. Appl. Phys. 85, 4785 (1999); condmat/9810295.

    Article  ADS  Google Scholar 

  38. D. Averin, Solid State Commun. 105, 659 (1998).

    Article  ADS  Google Scholar 

  39. Y. Makhlin et al., Nature 398, 305 (1999).

    Article  ADS  Google Scholar 

  40. L. B. Ioffe, V. B. Geshkenbein, M. V. Feigel’man, A. L. Fauchère and G. Blatter, Nature 398, 679 (1999).

    Article  ADS  Google Scholar 

  41. A. M. Zagoskin, coed-mat/9903170; A. Biais and A. M. Zagoskin, quant-ph/9905043.

    Google Scholar 

  42. J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal and S. Lloyd, Science 285, 1036 (1999).

    Article  Google Scholar 

  43. T. Brun and H. Wang, “Coupling nanocrystals to a high-Q silica microsphere: entanglement in quantum dots via photon exchange”, quant-ph/9906025.

    Google Scholar 

  44. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin and A. Small, Phys. Rev. Lett. 83, 4204 (1999); quant-ph/9904096.

    Article  ADS  Google Scholar 

  45. A. Sorensen and K. Molmer, Phys. Rev. Lett. 82, 1971 (1999).

    Article  ADS  Google Scholar 

  46. M. Sherwin, A. Imamoglu and Thomas Montroy, “Quantum computation with quantum dots and terahertz cavity quantum electrodynamics”, quant-ph/9903065.

    Google Scholar 

  47. G. D. Sanders et al., “An optically driven quantum dot quantum computer”, quant-ph/9909070.

    Google Scholar 

  48. S. M. Shahriar et al., unpublished.

    Google Scholar 

  49. D. Steele and D. Gammon, unpublished.

    Google Scholar 

  50. C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India( IEEE, New York, 1984 ), p. 175.

    Google Scholar 

  51. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935).

    Article  ADS  MATH  Google Scholar 

  52. A. Aspect, J. Dalibard, G. Roger, Phys. Rev. Lett. 49, 1804 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  53. W. Tittel et al., Phys. Rev. Lett. 81, 3563 (1998).

    Article  ADS  Google Scholar 

  54. D. Bouwmeester et al., Nature 390, 575 (1997);

    Google Scholar 

  55. D. Boschi et al., Phys. Rev. Lett. 80, 1121 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. D. Loss and E. Sukhorukov, cond-mat/9907129.

    Google Scholar 

  57. G. Burkard, D. Loss and E. V. Siikhorukov, cond-mat/9906071.

    Google Scholar 

  58. G. D. Mahan, Many-Particle Physics, 2nd Ed. ( Plenum, New York, 1993 ).

    Google Scholar 

  59. D. V. Averin and Yu. V. Nazarov, in Single Charge Tunneling, eds. H. Grabert and M. H. Devoret, NATO ASI Series B: Physics Vol. 294, Plenum Press, New York, 1992.

    Google Scholar 

  60. J. König, H. Schoeller and G. Schön, Phys. Rev. Lett. 78, 4482 (1997).

    Article  ADS  Google Scholar 

  61. D. Loss and P. Goldbart, Phys. Rev. B 45, 13544 (1992).

    Google Scholar 

  62. R. Hanbury Brown and R. Q. Twiss, Nature (London) 177, 27 (1956).

    Article  ADS  Google Scholar 

  63. G. A. Prinz, Science 2821660 (1998).

    Article  Google Scholar 

  64. R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures (Addison-Wesley, Reading, MA, 1965), Vol. 3.

    MATH  Google Scholar 

  65. L. E. Ballentine, Quantum Mechanics, pp. 352, Prentice Hall, New Jersey, 1990.

    Google Scholar 

  66. R. Loudon, Phys. Rev. A 58, 4904 (1998).

    Article  ADS  Google Scholar 

  67. C. H. W. Barnes, private communication.

    Google Scholar 

  68. M. Büttiker, Phys. Rev. Lett. 65, 2901 (1990)

    Article  ADS  Google Scholar 

  69. Phys. Rev. B 46, 12485 (1992).

    Google Scholar 

  70. Th. Martin and R. Landauer, Phys. Rev. B 45, 1742 (1992)

    Article  ADS  Google Scholar 

  71. R. C. Liu et al., Nature 391, 263 (1998);

    Article  ADS  Google Scholar 

  72. M. Henny et al., Science 284, 296 (1999)

    Article  ADS  Google Scholar 

  73. W. D. Oliver et al., Science 284, 299 (1999).

    Article  ADS  Google Scholar 

  74. For a positive sign in the noise cross correlations due to the boson-like properties of Cooper pairs see, J. Torrès, T. Martin, condmat/9906012.

    Google Scholar 

  75. For finite frequencies, we obtain the noise power S αα(ω) = (2e 2/)[(1-δω,0) + 2T(1-T)(δω,0⍑δω,∈1-∈2)]

    Google Scholar 

  76. For instance, in metals such as bulk Cu the quasiparticle weight becomes, within the RPA approximation, zF = 0.77 [69], while for a GaAs 2DEG we find (also within RPA) zF = 1—rs(1/2+1/π) = 0.66 for the GaAs interaction parameter rs = 0.61 (the details of the calculation will be given elsewhere).

    Google Scholar 

  77. T. M. Rice, Ann. Phys. 31100 (1965).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

DiVincenzo, D.P., Burkard, G., Loss, D., Sukhorukov, E.V. (2000). Quantum Computation and Spin Electronics. In: Kulik, I.O., Ellialtioğlu, R. (eds) Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics. NATO Science Series, vol 559. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4327-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4327-1_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6626-3

  • Online ISBN: 978-94-011-4327-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics