Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 559))

  • 646 Accesses

Abstract

Since the development of the scanning tunneling microscope (STM) [1] it is not only possible to see, but also to manipulate and to measure the transport properties of individual atoms on surfaces [2]. By energy dependent measurements of the differential conductance a certain chemical information can be achieved [3]. The challenging aim of building up electronic circuits atom by atom with tailor-made properties, however, would require the detailed knowledge of the relation between the physical and chemical properties of the respective atoms and their conduction properties, a problem which has been addressed by different methods during the last years [4, 5, 6]. The most simple system for all investigations - including the present - is a one-atom contact between two metallic banks of the same element.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Tunneling through a controllable vacuum gap, Appl. Phys. Lett. 40, 178–180 (1982).

    Google Scholar 

  2. M. F. Crommie, C. P. Lutz and D. M. Eigler, Confinement of electrons to quantum corrals on a metal surface, Science 262, 218–220 (1993)

    Article  ADS  Google Scholar 

  3. G. Binnig, H. Rohrer, Scanning tunneling microscopy, IBM J. Res. Dev. 30, 355 (1986).

    Google Scholar 

  4. N. D. Lang, Resistance of atomic wires, Phys. Rev. B 52, 5335–5342 (1995).

    Article  Google Scholar 

  5. C. C. Wan, J.-L. Mozos, G. Taraschi, J. Wang and H. Guo, Quantum transport through atomic wires, Appl. Phys. Lett. 71, 419–421 (1997).

    Google Scholar 

  6. A. Yazdani, D. M. Eigler and N. D. Lang, Off-resonance conductance through atomic wires, Science 272, 1921–1924 (1996).

    Article  ADS  Google Scholar 

  7. R. Landauer, Electrical resistance of disordered one-dimensional lattices. Philos. M. 21, 863–867 (1970).

    Google Scholar 

  8. J. C. Cuevas, A. Levy Yeyati and A. Martin-Rodero, Microscopic origin of the conducting channels in metallic atomic-size contacts, Phys. Rev. Lett. 80, 1066–1069 (1998).

    Article  ADS  Google Scholar 

  9. A. Levy Yeyati, A. Martin-Rodero and F. Flores, Conductance quantization and electron resonances in sharp tips and atomic size contacts, Phys. Rev. B 56, 10369–10372 (1997).

    Article  Google Scholar 

  10. E. Scheer, P. Joyez, D. Esteve, C. Urbina and M. H. Devoret, Conduction channel transmission of atomic-size aluminum contacts, Phys. Rev. Lett. 78, 3535–3538 (1997).

    Article  ADS  Google Scholar 

  11. G. B. Arnold, Tunneling without the tunneling Hamiltonian II. Subgap harmonic structure, Journal of Low Temp. Phys. 68, 1–27 (1987).

    Article  ADS  Google Scholar 

  12. D. Averin and A. Bardas, AC Josephson effect in a single quantum channel, Phys. Rev. Lett. 75, 1831–1834 (1995).

    Article  ADS  Google Scholar 

  13. J. C. Cuevas, A. Martin-Rodero and A. Levy Yeyati, Hamiltonian approach to the transport properties of superconducting quantum point contacts, Phys. Rev. B 54, 7366–7379 (1996).

    Article  Google Scholar 

  14. E. N. Bratus, V. S. Shumeiko, E. V. Bezuglyi and G. Wendin, dc-current transport and ac Josephson effect in quantum junctions at low voltage, Phys. Rev. B 55, 12666–12677 (1997).

    Article  Google Scholar 

  15. D. Esteve, The proximity effect in mesoscopic diffusive conductors. In Mesoscopic Electron Transport (eds. L. L. Sohn, L. P. Kouwenhoven and G. Schön, Kluwer Academic Publishers, 1997) pp. 375–406, and references therein.

    Google Scholar 

  16. W. Belzig, F. K. Wilhelm, C. Bruder, G. Schön and A. D. Zaikin, Quasiclassical Greens function approach to mesoscopic superconductivity, Superlattices and Microstructures 25, 1251–1288 (1999).

    Article  ADS  Google Scholar 

  17. E. Scheer, W. Belzig, Y. Naveh, D. Esteve, M. H. Devoret and C. Urbina, Proximity effect and multiple Andreev reflections in gold atomic contacts, submitted for publication.

    Google Scholar 

  18. L. Olesen, E. Lgsgaard, I. Stensgaard, F. Besenbacher, J. Schiotz, P. Stoltze, K. W. Jacobsen and J. K. Norskov, Quantized conductance in an atom-sized point contact, Phys. Rev. Lett. 72, 2251–2254 (1994).

    Article  ADS  Google Scholar 

  19. N. Agrait, J. G. Rodrigo and S. Vieira, Conductance steps and quantization in atomic-size contacts, Phys. Rev. B 47, 12345–12348 (1996).

    Article  Google Scholar 

  20. J. M. van Ruitenbeek, Quantum point contacts between metals; in Mesoscopic Electron Transport (eds. L. L. Sohn, L. P. Kouwenhoven and G. Schön, Kluwer Academic Publishers) pp. 549–579, and references therein.

    Google Scholar 

  21. J. M. van Ruitenbeek, A. Alvarez, I. Piiieyro, C. Grahmann, P. Joyez, M. H. Devoret, D. Esteve and C. Urbina, Adjustable nanofabricated atomic size contacts Rev. Sci. Inst. 67, 108–111 (1996).

    Article  ADS  Google Scholar 

  22. E. Scheer, P. Joyez, D. Esteve, C. Urbina and M. H. Devoret, Conduction channels of superconducting quantum point contacts, to appear in Physica B.

    Google Scholar 

  23. E. Scheer, N. Agraït, J. C. Cuevas, A. Levy Yeyati, B. Ludoph, A. Martin-Rodero, G. Rubio Bollinger, J. M. van Ruitenbeek and C. Urbina, The signature of chemical valence in the conduction through a single-atom contact, Nature 394, 154–157 (1998).

    Article  ADS  Google Scholar 

  24. The Al sample has been fabricated as explained in [10] within a single evaporation step through a mask without the bridge.

    Google Scholar 

  25. C. Untiedt, G. Rubio, S. Vieira and N. Agraït, Fabrication and characterization of metallic nanowires, Phys. Rev. B 56, 1251–1288 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Scheer, E., Belzig, W., Devoret, M.H., Esteve, D., Urbina, C. (2000). Conductance Channels of Gold Atomic-Size Contacts. In: Kulik, I.O., Ellialtioğlu, R. (eds) Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics. NATO Science Series, vol 559. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4327-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4327-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6626-3

  • Online ISBN: 978-94-011-4327-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics