Skip to main content

Coulomb Blockade in Quantum Dots with Overlapping Resonances: Towards an Explanation of the Phase Behaviour in the Mesoscopic Double-Slit Experiment

  • Chapter
Book cover Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics

Part of the book series: NATO Science Series ((ASIC,volume 559))

  • 638 Accesses

Abstract

Coulomb blockade (CB) in a quantum dot (QD) with one anomalously broad level is considered. In this case many consecutive pronounced CB peaks correspond to occupation of one and the same broad level. Between the peaks the electron jumps from this level to one of the narrow levels and the transmission through the dot at the next resonance essentially repeats that at the previous one. This offers a natural explanation to the recently observed behavior of the transmission phase in an interferometer with a QD. Single particle resonances of very different width are natural if the dot is not fully chaotic. This idea is illustrated by the numerical simulations for a non-integrable QD whose classical dynamics is intermediate between integrable and chaotic Possible manifestations for the Kondo experiments in the QD are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. P. Kouwenhoven et al., Mesosopic Electron Transport, Proceedings of the NATO ASI, edited by L. L. Sohn, L. P. Kouwenhoven and G. Schön (Kluwer 1997 ).

    Google Scholar 

  2. C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).

    Article  ADS  Google Scholar 

  3. T. Guhr, A. Müller-Groeling and H. A. Weidenmüller, Phys. Rep. 299, 189 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  4. E. Schuster et al., Nature, 385, 417 (1997);

    Article  ADS  Google Scholar 

  5. A. Yacoby et al., Phys. Rev. Lett., 74, 4047 (1995).

    Article  ADS  Google Scholar 

  6. E. Bilks et al., Physica, 249–251, 295, 1998; D. Sprinzak and M. Heiblum, unpublished.

    Google Scholar 

  7. D. Sprinzak and M. Heiblum, unpublished.

    Google Scholar 

  8. P. S. Deo and A. M. Jayannavar, Mod. Phys. Lett. 10, 787 (1996)

    Article  ADS  Google Scholar 

  9. H. Xu and W. Sheng, Phys. Rev. B57, 11903 (1998);

    Article  ADS  Google Scholar 

  10. C.-M. Ryu and S. Y. Cho, Phys. Rev. B58, 3572 (1998);

    Article  ADS  Google Scholar 

  11. H.-W. Lee, Phys. Rev. Lett. 82, 2358 (1999).

    Article  ADS  Google Scholar 

  12. Y. Oreg and Y. Gefen, Phys. Rev. B55, 13726 (1997).

    Article  ADS  Google Scholar 

  13. G. Hackenbroich, W. D. Heiss and H. A. Weidenmiiller, Phys. Rev. Lett. 79, 127 (1997).

    Article  ADS  Google Scholar 

  14. R. Baltin et al., cond-mat/9807286.

    Google Scholar 

  15. R. Baltin and Y. Gefen, cond-mat/9907205.

    Google Scholar 

  16. Single charge tunneling: Coulomb blockade phenomena in nanostructures, NATO ASI series, edited by H. Grabert and M. H. Devoret (Plenum press 1992).

    Google Scholar 

  17. K. A. Matveev, Sov. Phys. JETP 72, 892 (1991); Phys. Rev. B 51, 1743 (1995).

    Google Scholar 

  18. S. Tarucha et al., Phys. Rev. Lett. 77, 3613 (1996).

    Article  ADS  Google Scholar 

  19. A. Bohr and B. R. Mottelson, Nuclear Structure, Benjamin, New York 1, 284 (1969).

    Google Scholar 

  20. L. D. Landau and E. M. Lifschitz Quantum Mechanics, p. 555, Pergamon, Oxford (1976).

    Google Scholar 

  21. L. I. Glazman and M. E. Raikh, JETP Lett. 47, 452 (1988)

    ADS  Google Scholar 

  22. T. K. Ng and P. A. Lee, Phys. Rev. Lett. 61, 1768 (1988)

    Article  ADS  Google Scholar 

  23. N. S. Wingreen and Y. Meir, Phys. Rev. B 49, 11040 (1994).

    ADS  Google Scholar 

  24. M. Stopa, Physica B 251, 228 (1998).

    ADS  Google Scholar 

  25. P. G. Silvestrov and Y. Imry, cond-mat/9903299

    Google Scholar 

  26. D. Goldhaber-Gordon et al., Nature 391, 156 (1998);

    Article  ADS  Google Scholar 

  27. D. Goldhaber-Gordon et al., Phys. Rev. Lett. 81, 5225 (1998).

    Article  ADS  Google Scholar 

  28. S. M. Cronenwett, T. H. Osterkamp, and L. P. Kouwenhoven, Science 281, 540 (1998).

    Article  ADS  Google Scholar 

  29. J. Schmid et al., Physica B 256–258, 182 (1998).

    Article  Google Scholar 

  30. F. Simmel et al., Phys. Rev. Lett. 83, 804 (1999).

    Article  ADS  Google Scholar 

  31. F. D. M. Haldane, Phys. Rev. Lett. 40, 416 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Silvestrov, P.G., Imry, Y. (2000). Coulomb Blockade in Quantum Dots with Overlapping Resonances: Towards an Explanation of the Phase Behaviour in the Mesoscopic Double-Slit Experiment. In: Kulik, I.O., EllialtioÄŸlu, R. (eds) Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics. NATO Science Series, vol 559. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4327-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4327-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6626-3

  • Online ISBN: 978-94-011-4327-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics