Skip to main content

Salt Tolerance at the Whole-Plant Level

  • Chapter

Part of the book series: NATO Science Series ((ASHT,volume 83))

Abstract

In a higher plant, it is only a small proportion of cells within the root that exist in relation to the external salinity. Most cells in a plant are not exposed directly to the external salinity but to the result of how this interacts with the processes governing uptake and partitioning of ions in the plant as a whole. These are predictably different processes, at higher levels of organisation, than cell-based processes. The number, nature and chromosomal distribution of genes and regulatory elements affecting how a whole plant responds to salinity will determine both the strategy and the practicability of breeding for increased performance. While QTL for important traits for environmental stress response have been identified, there is little evidence as to the nature of the genetic information, other than in cold tolerance. The work on cold tolerance suggests the importance of signal perception and signalling pathways, but for salinity there is little indication of what genes might control or co-ordinate the response of whole plants to salinity. The identification of such genes by positional cloning alone is highly difficult with current mapping resolution. It is possible to use DNA markers for such genes without knowing what they are — but the transfer of markers across a range of genotypes may not be easy. It is proposed that the way forward is via the integration of map-based location of QTL and the identification of possible candidate genes via the increasing power of differential expression technologies such as micro-arrays.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amitai-Zeigerson H, Scolnik PA, Barzvi D. 1995. Tomato Asrl mRNA and protein are transiently expressed following salt stress, osmotic stress and treatment with abscisic acid. Plant Science 110, 205–213.

    Article  CAS  Google Scholar 

  • Amtmann A, Sanders D. 1999. Mechanisms of Na+ uptake by plant cells. Advances in Botanical Research Incorporating Advances in Plant Pathology 29, 75–112.

    Article  CAS  Google Scholar 

  • Andolfatto P, Bomhouser A, Bohnert HJ, Thomas JC. 1994. Transformed hairy roots of Mesembryanthemum crystallinum - gene expression patterns upon salt stress. Physiologia Plantarum 90, 708–714.

    Article  Google Scholar 

  • Asins MJ, Breto MP, Cambra M, Carbonell EA. 1993a. Salt tolerance in Lycopersicon species. 1. Character definition and changes in gene expression. Theoretical and Applied Genetics 86, 737–743.

    CAS  PubMed  Google Scholar 

  • Asins MJ, Breto MP, Carbonell EA. 1993b. Salt tolerance in Lycopersicon Species.2. Genetic effects and a search for associated traits. Theoretical and Applied Genetics 86, 769–774.

    CAS  PubMed  Google Scholar 

  • Bei Q, Luan S. 1998. Functional expression and characterization of a plant K+ channel gene in a plant cell model. Plant Journal, 857–865.

    Google Scholar 

  • Bartels D, Nelson D. 1994. Approaches to improving stress tolerance using molecular genetics. Plant, Cell and Environment 17, 659–667.

    Article  CAS  Google Scholar 

  • Bohnert RI, Jensen RG. 1996. Metabolic engineering for increased salt tolerance - The next step. Australian Journal of Plant Physiology 23, 661–666.

    Article  Google Scholar 

  • Bray EA, Cohen A, Plant AL, Moses MS, Imai R, Griffiths A. 1997. Regulation of gene120 expression by endogenous ABA in tomato plants. Acta Physiologiae Plantarum 19, 405–418.

    Article  CAS  Google Scholar 

  • Breto MP, Asins MJ, Carbonell EA. 1993. Genetic variability in Lycopersicon species and their genetic relationships. Theoretical and Applied Genetics 86, 113–120.

    Article  CAS  PubMed  Google Scholar 

  • Champoux MC, Wang G, Sarkarung, S, Mackill DJ, O Toole JC, Huang N, McCouch S. 1995. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theoretical and Applied Genetics 90, 969–981.

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay MK, Gupta S, Sengupta DN, Ghosh B. 1997. Expression of arginine decarboxylase in seedlings of indica rice (Oryza sativa L) cultivars as affected by salinity stress. Plant Molecular Biology 34, 477–483.

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR. 1992. Kinetics of maize leaf elongation.2. Responses of a Na-excluding cultivar and a Na-including cultivar to varying Na/Ca salinities. Journal of Experimental Botany 43, 857–864.

    Article  Google Scholar 

  • Dubcovsky J, Maria GS, Epstein E, Luo MC, Dvorak J. 1996. Mapping of the K+/Na+ Discrimination Locus Knal in Wheat. Theoretical and Applied Genetics 92, 448–454.

    Article  CAS  PubMed  Google Scholar 

  • Dunn MA, White Al, Vural S, Hughes MA. 1998. Identification of promoter elements in a lowtemperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.). Plant Molecular Biology 38, 551–564.

    Article  CAS  PubMed  Google Scholar 

  • Espartero J, Sanchezaguayo I, Pardo JM. 1995. Molecular characterization of glyoxalase-I from a higher plant; Upregulation by stress. Plant Molecular Biology 29, 1223–1233.

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR. 1977. The mechanisms of salt tolerance in halophytes. Annual Review of Plant Physiology 28, 89–121.

    Article  CAS  Google Scholar 

  • Flowers TJ, Yeo AR 1986. Ion relations of plants under drought and salinity. Australian Journal of Plant Physiology 13, 75–91.

    Article  CAS  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Clipson NJW. 1986. Halophytes. The Quarterly Review of Biology 61, 313–337.

    Article  Google Scholar 

  • Flowers TJ, Yeo AR. 1995. Breeding for salinity resistance in crop plants - where next. Australian Journal of Plant Physiology 22, 875–884.

    Article  Google Scholar 

  • Flowers TJ, Garcia A, Koyama M, Yeo AR. 1997. Breeding for salt tolerance in crop plants - the role of molecular biology. Acta Physiologiae Plantanun 19, 427–433.

    Article  CAS  Google Scholar 

  • Flowers TJ, Koyama ML, Flowers SA, Singh KP, Chinta S, Yeo AR. 1999. QTL: their place in the engineering of tolerance of rice to salinity. Journal of Experimental Botany (in press).

    Google Scholar 

  • Forsthoefel NR, Schaeffer FU,Owens K, Cushman JC. 1996. Characterization of cis-acting elements controlling salinity-induced transcription of cam genes in the common ice plant, Mesembryanthemum crystallinum Plant Physiology 111, 558–558.

    Google Scholar 

  • Fu, H-H, Luan S. 1998. AtKUP 1: a dual affinityK+ transporter from Arabidopsis. Plant Cell 10, 63–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gaxiola, RA, et al., The Arabidopsis thaliana proton transporters, AtNhxl and Avpl, can function in cation detoxification in yeast. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(4): p. 1480–1485.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaymard, F., et al, Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell, 1998. 94(5): p. 647–655.

    Article  CAS  PubMed  Google Scholar 

  • Guy CL. 1990. Cold acclimation and freezing stress tolerance: role of protein metabolism. Annual Review of Plant Physiology and Plant Molecular Biology 41, 187–223.

    Article  CAS  Google Scholar 

  • Hurkman WJ. 1992. Effect of salt stress on plant gene-expression - a review. Plant and Soil 146,145–151.

    Article  CAS  Google Scholar 

  • IRRI. 1997. Rice varieties boost yield and improve saline soils. In: IRRI, eds. Partners Making a Difference, IRRI Los Banos, 37.

    Google Scholar 

  • Ishitani M, Nakamura T, Han SY, Takabe T. 1995. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic-stress and abscisic-acid. Plant Molecular Biology 27, 307–315.

    Article  CAS  PubMed  Google Scholar 

  • Ishitani M, Xiong LM, Stevenson B, Zhu JK 1997. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: Interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9, 1935–1949.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones HG. 1992. Plants and Microclimate. Cambridge, Cambridge University Press.

    Google Scholar 

  • Kearsey MJ, Farquhar AGL. 1998. QTL analysis in plants; where are we now? Heredity 80, 137–142.

    Article  PubMed  Google Scholar 

  • Kearsey MJ. 1998. The principles of QTL analysis (a minimal mathematics approach). Journal of Experimental Botany 49, 1619–1623.

    Article  CAS  Google Scholar 

  • Kim EJ et al. 1998. AtKUP1: An Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell, 10, 51–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knight H, Trewavas M, Knight MR 1997. Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant Journal 12, 1067–1078.

    Article  CAS  PubMed  Google Scholar 

  • Low R, Rocket B, Kirsch M, Ratajczak R, Hortensteiner S, Martinoia E, Lunge U, Rausch T. 1996. Early salt stress effects on the differential expression of vacuolar H+-ATPase genes in roots and leaves of Mesembryanthemum crystallinum. Plant Physiology 110, 259–265.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maathuis FJM, Sanders D. 1996. Mechanisms of potassium absorption by higher plant roots. Physiologia Plantanun, 96, 158–168.

    Article  CAS  Google Scholar 

  • Mizoguchi T, Hayashida N, Yamaguchi-Shinozaki K, Kamada H, Shinozaki K 1995. Two genes that encode ribosomal-protein-s6 kinase homologs are induced by cold or salinity stress in Arabidopsis-thaliana. Febs Letters 358, 199–204.

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K 1996. A gene encoding a mitogen-activated protein-kinase is induced simultaneously with genes for a mitogen-activated protein-kinase and an s6 ribosomal-protein kinase by touch, cold, and water-stress in Arabidopsis-thaliana. Proceedings of the National Academy of Sciences of the United States of America 93, 765–769.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moons A, Gielen J, Van de Kerckhove J, Van der Straeten D, Gheysen G, Van Montagu M. 1997. An abscisic-acid-and salt-stress-responsive rice cDNA from a novel plant gene family. Planta 202, 443–454.

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Schachtman DP, Condon AG. 1995. The significance of a two-phase growth response to salinity in wheat and barley. Australian Journal of Plant Physiology 22, 561–569.

    Article  CAS  Google Scholar 

  • Munns R, Termaat A. 1986. Whole-plant responses to salinity. Australian Journal of Plant Physiology 13, 143–160.

    Article  Google Scholar 

  • Munns R 1993. Physiological processes limiting plant growth in saline soils - some dogmas and hypotheses. Plant Cell and Environment 16, 15–24.

    Article  CAS  Google Scholar 

  • Neumann P. 1997. Salinity resistance and plant growth revisited. Plant Cell and Environment 20, 1193–1198.

    Article  CAS  Google Scholar 

  • Oertli JJ. 1968. Extracellular salt accumulation, a possible mechanism of salt injury in plants. Agosto 12, 461–469.

    Google Scholar 

  • Patil MS. 1994. Salt stress dependent rice gene expression. Rice Biotechnology Quarterly 18, 28.

    Google Scholar 

  • Prioul J-P, Quarrie S, Causse M, de Vienne D. 1997. Dissecting complex physiological functions through the use of molecular quantitative genetics. Journal of Experimental Botany 47, 1151–1163.

    Article  Google Scholar 

  • Santa-Mara, G., et al. 1997. The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9, 2281–2289.

    Article  Google Scholar 

  • Schaeffer HJ, Forsthoefel NR, Cushman JC. 1995. Identification of enhancer and silencer regions involved in salt-responsive expression of Crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum. Plant Molecular Biology 28, 205–218.

    Article  CAS  PubMed  Google Scholar 

  • Thiel G, Lynch J, Lauchli A. 1988. Short-term effects of salinity stress on the turgor and elongation of growing barley leaves. Journal of Plant Physiology 132, 38–44.

    Article  CAS  Google Scholar 

  • Thomashow MF, Stockinger EJ, Jaglo-Ottosen KR, Gilmour SJ, Zarka DG. 1997. Function and regulation of Arabidopsis thaliana COR (cold-regulated) genes. Acta Physiologiae Plantarum 19, 497–504.

    Article  CAS  Google Scholar 

  • Tomos AD, Prtitchard J, Thomas A, Afir H. 1989. Using the pressure probe to study salt, water and cold stress. In: Tazaw, M Katsumi, Y Masuda and H Okamoto, eds. Plant Water Relations and Growth under Stress, Tokyo, MYU K. K., 245–252.

    Google Scholar 

  • Vernon DM, Ostrem JA, Bohnert HJ. 1993. Stress perception and response in a facultative halophyte - the regulation of salinity-induced genes in Mesembryanthemum crystallinum Plant Cell and Environment 16, 437–444.

    Article  CAS  Google Scholar 

  • Winicov I. 1991. Characterisation of salt tolerant alfalfa (Medicago sativa L.) plants regenerated from salt tolerant cell lines. Plant Cell Reports 10, 561–564.

    Article  CAS  PubMed  Google Scholar 

  • Winicov I. 1994. Gene Expression in relation to salt tolerance. Stress - Induced Gene Expression in Plants, Poststrasse 22/7000 Chur/Switzerland, Harwood Academic Publ GmbH, 61–85.

    Google Scholar 

  • Winicov I, Bastola DR 1997. Salt tolerance in crop plants: New approaches through tissue culture and gene regulation. Acta Physiologiae Plantarum 19, 435–449.

    Article  CAS  Google Scholar 

  • Winicov I, Shirzadegan M. 1997. Tissue specific modulation of salt inducible gene expression: Callus versus whole plant response in salt tolerant alfalfa. Physiologia Plantanun 100, 314–319.

    Article  CAS  Google Scholar 

  • Yadav R, Flowers TJ, Yeo AR. 1996. The involvement of the transpirational bypass flow in sodium uptake by high and low sodium transporting lines of rice developed through intervarietal selection. Plant Cell and Environment 19, 329–336.

    Article  CAS  Google Scholar 

  • Yadav R, Courtois B, Huang N, McLaren G. 1997. Mapping genes controlling root morphology and root distribution in a doubled-haploid population of rice. Theoretical and Applied Genetics 94, 619–632.

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K. 1994. A novel cis-acting element in an arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251–264.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yeo AR, Yeo ME, Flowers TJ. 1987. The contribution of an apoplastic pathway to sodium uptake by rice roots in saline conditions. Journal of Experimental Botany 38, 1141–1153.

    Article  CAS  Google Scholar 

  • Yeo AR, Flowers TI. 1989. Selection for physiological characters - examples from breeding for salt tolerance. In: Jones HG, Flowers TJ, Jones MB, eds. Plants under Stress Biochemistry, Physiology and Ecology and their Application to Plant Improvement, Cambridge, Cambridge University Press, 217–234.

    Chapter  Google Scholar 

  • Yeo AR, Yeo ME, Flowers SA, Flowers TJ. 1990. Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. Theoretical and Applied Genetics 79, 377–384.

    Article  CAS  Google Scholar 

  • Yeo AR, Lee KS, Izard P, Boursier PJ, Flowers TJ. 1991. Short and long term effects of salinity on leaf growth in rice (Oryza sativa). Journal of Experimental Botany 42, 881–889.

    Article  CAS  Google Scholar 

  • Yeo AR. 1998. Molecular biology of salt tolerance in the context of whole-plant physiology. Journal of Experimental Botany 49, 915–929.

    CAS  Google Scholar 

  • Yeo AR et al. 1999. Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant, Cell and Environment 22, 59–565.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yeo, A.R., Koyama, M.L., Chinta, S., Flowers, T.J. (2000). Salt Tolerance at the Whole-Plant Level. In: Cherry, J.H., Locy, R.D., Rychter, A. (eds) Plant Tolerance to Abiotic Stresses in Agriculture: Role of Genetic Engineering. NATO Science Series, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4323-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4323-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6567-9

  • Online ISBN: 978-94-011-4323-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics