Skip to main content

Cadmium Toxicity in Leaf Peroxisomes from Pea Plants: Effect on the Activated Oxygen Metabolism Protrelytic Activity

  • Chapter
Plant Tolerance to Abiotic Stresses in Agriculture: Role of Genetic Engineering

Abstract

In this work the effect of growing pea (Pisum sativum L.) plants with a toxic CdC12 concentration on the activated oxygen metabolism of leaf peroxisomes was studied. Pea plants were grown in the greenhouse under optimum conditions for 14 days, and then media were supplemented with 50 µM CdC12 and grown for 21 days. Peroxisomes were purified from pea leaves and in the peroxisomal fractions from control and Cd-treated plants the activity of endogenous proteases and different enzymes of the activated oxygen metabolism was determined. The H2O2 content of leaf peroxisomes increased in plants grown with Cd. Likewise, the proteolytic activity of peroxisomes (aminopeptidase and endopeptidase activity) was enhanced in Cd-treated plants. The increased activity in response to Cd of some enzymes of the ascorbateglutathione cycle (ascorbate peroxidase and glutathione reductase) as well as three NADP-dehydrogenases (glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and isocitrate dehydrogenase), suggests that these peroxisomal enzymatic systems could be important in the defence of cells against Cd-derived oxidative stress. The increased activity of the glyoxylate cycle enzymes, malate synthase and isocitrate lyase, and proteases, indicate that Cd induces senescence symptoms in leaf peroxisomes. The antioxidative enzymes of peroxisomes appear to be a good choice to design molecular strategies directed to improve the tolerance of plants to heavy-metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44: 276–287

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  CAS  PubMed  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52: 302–310

    Article  CAS  PubMed  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127: 139–147

    Article  CAS  Google Scholar 

  • Chen R, Bismuth E, Champigny ML, Gadal P (1989) Chromatographic and immunological evidence that chloroplastic and cytosolic pea (Pisum sativum L.) NADP-isocitrate dehydrogenases are distinct isoenzymes. Planta 178: 157–163

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Palma JM, del Río LA (1993) Evidence for the presence of proteolytic activity in peroxisomes. Eur J Cell Biol 61: 81–85

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Sandalio LM, Distefano S, Palma JM, Lupiáñez JA, del Río LA (1998) A dehydrogenase-mediated recycling system of NADPH in plant peroxisomes. Biochem J 330: 777–784

    PubMed Central  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Sandalio LM, Palma JM, Lupiáñez JA, del Río LA (1999) Peroxisomal NADPdependent isocitrate dehydrogenase: characterization and activity regulation during natural senescence. Plant Physiol, in press

    Google Scholar 

  • De Filippis LF, Ziegler H (1993) Effect of sublethal concentrations of zinc, cadmium and mercury on the photosynthetic carbon reduction cycle of Euglena. J Plant Physiol 142: 167–172

    Article  CAS  Google Scholar 

  • del Río LA, Sandalio LM, Yáñez J, Gómez M (1985) Induction of a manganese-containing superoxide dismutase in leaves of Pisum sativum L. by high nutrient levels of zinc and manganese. J Inorg Biochem 24: 25–34

    Article  Google Scholar 

  • del Río LA, Sandalio LM, Palma JM, Bueno P, Corpas FJ (1992) Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Rad Biol Med 13: 557–580

    Article  PubMed  Google Scholar 

  • del Río LA, Palma JM, Sandalio LM, Corpas FJ, Pastori GM, Bueno P López-Huertas E (1996) Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. Biochem Soc Trans 24: 434--438

    PubMed  Google Scholar 

  • del Río LA, Sandalio LM, Corpas FJ, López-Huertas E, Palma JM, Pastori GM (1998) Activated oxygen-mediated metabolic functions of leaf peroxisomes. Physiol Plant 104: 673–680

    Article  Google Scholar 

  • Distefano S, Palma JM, Gómez M, del Rio LA (1997) Characterization of endoproteases from plant peroxisomes. Biochem J 327: 399–405

    PubMed Central  CAS  PubMed  Google Scholar 

  • Distefano S, Palma JM, McCarthy I, del Rio LA (1999) Proteolytic cleavage of plant proteins by peroxisomal endoproteases from senescent pea leaves. Planta, in press

    Google Scholar 

  • Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180: 278–284

    Article  CAS  PubMed  Google Scholar 

  • Fahimi HD, Sies H (1987) Peroxisomes in Biology and Medicine, Springer-Verlag, Berlin

    Book  Google Scholar 

  • Fodor A, Szabó-Nagy A, Erdei L (1995) The effects of cadmium on the fluidity and H`-ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 147: 87–92

    Article  CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133: 21–25

    Article  CAS  PubMed  Google Scholar 

  • Frew J, Jones P, Scholes G (1983) Spectrophotometric determination of hydrogen peroxide and organic hydroperoxides at low concentrations in aqueous solution. Anal Chim Acta 155: 139–150

    Article  CAS  Google Scholar 

  • Geiken B, Masojídek, Rizzuto M, Pompili ML, Giardi MT (1998) Incorporation of [35S]methionine in higher plants reveals that stimulation of the DI reaction centre II protein turnover accompanies tolerance to heavy metal stress. Plant, Cell Environm 21: 1265–1273

    Article  CAS  Google Scholar 

  • Goldberg DM, Ellis G (1983) Isocitrate. In Bergmeyer, ed, Methods of Enzymatic Analysis, 3rd edn, Academic Press, New York, pp 183–190

    Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84: 439–443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hernández LE, Cooke DT (1997) Modification of the root plasma membrane lipid composition of cadmium-treated Pisum sativum. J Exp Bot 48: 1375–1381

    Article  Google Scholar 

  • Huang AHC, Trelease RN, Moore TS, Jr (1983) Plant Peroxisomes, Academic Press, New York

    Google Scholar 

  • Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbateglutathione cycle in mitochondria and peroxisomes of pea (Pisum sativum L.) leaves. Plant Physiol 114: 275–284

    PubMed Central  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Article  CAS  PubMed  Google Scholar 

  • López-Huertas E, Sandalio LM, del Rio LA (1995) Integral membrane polypeptides of pea leaf peroxisomes: characterization and response to plant stress. Plant Physiol Biochem 33: 295–302

    Google Scholar 

  • López-Huertas E, Corpas FJ, Sandalio LM, del Río LA (1999) Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation. Biochem J 337: 531–536

    Article  PubMed Central  PubMed  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244: 6049–6055

    CAS  PubMed  Google Scholar 

  • Nishimura M, Akhmendor YD, Akazawa T (1983) Molecular structure and subcellular localization of spinach leaf glycolate oxidase. Photosynth Res 4: 99–109

    Article  CAS  Google Scholar 

  • Pastori GM, del Rio LA (1997) Natural senescence of pea leaves: an activated oxygen-mediated function for peroxisomes. Plant Physiol 113: 411–418

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rajagopalan KV (1985) Purification of bovine milk xanthine oxidase. In Greenwald RA, ed, CRC Handbook of Methods for Oxygen Radical Research, CRC Press, Boca Ratón, Florida, pp 21–23

    Google Scholar 

  • Romero-Puertas MC, McCarthy I, Sandalio LM, Palma JM, Corpas FJ, Gómez M, del Río LA (1999) Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes. Free Rad Res, in press

    Google Scholar 

  • Sandalio LM, Dalurzo HC, Romero-Puertas MC, Gómez M, del Rio LA (1999) Cadmium-induced changes in the growth and oxidative metabolism of pea plants, submitted for publication

    Google Scholar 

  • Shaw BP (1995) Effect of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus vulgaris. Biol Plant 37: 587–596

    Article  CAS  Google Scholar 

  • Somashekaraiah BV, Padmaja K, Prassad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation. Physiol Plant 85: 85–89

    Article  CAS  Google Scholar 

  • Stobart AK, Griffits W, Bukhari IA, Sherwood RP (1985) The effect of Cd’ on the biosynthesis of chlorophyll in leaves of barley. Physiol Plant 63: 293–298

    Article  CAS  Google Scholar 

  • van den Bosch H, Schutgens RB, Wanders RJ, Tager JM (1992) Biochemistry of peroxisomes. Annu Rev Biochem 61: 157–197

    Article  PubMed  Google Scholar 

  • Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51: 173–212

    Article  CAS  Google Scholar 

  • Yamaguchi J, Nishimura M (1984) Purification of glyoxysomal catalase and immunochemical comparison of glyoxysomal and leaf peroxisomal catalase in germinating pumpkin cotyledons. Plant Physiol 74: 261–267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zenk MH (1995) Heavy metal detoxification in higher plants. A review. Gene 179: 21–30

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

del Río, L.A. et al. (2000). Cadmium Toxicity in Leaf Peroxisomes from Pea Plants: Effect on the Activated Oxygen Metabolism Protrelytic Activity. In: Cherry, J.H., Locy, R.D., Rychter, A. (eds) Plant Tolerance to Abiotic Stresses in Agriculture: Role of Genetic Engineering. NATO Science Series, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4323-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4323-3_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6567-9

  • Online ISBN: 978-94-011-4323-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics