Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 83))

Abstract

Water deficit due to drought, high salt concentration and low temperature is one of the most important factor affecting the plants distribution on the earth surface. Identification of genes involved in mechanisms through which plants adapt to these adverse conditions is an important goal for future improvement of crop species in their tolerance to dehydration stress. Some genes involved in water stress response present MYB recognition sites in their promoter regions. MYB proteins are a class of transcription factors, identified in nearly all eukaryotes, sharing a common DNA binding domain. In Arabidopsis thaliana more than 90 R2R3-MYB genes have been identified. In this paper we present analysis of fifteen Arabidopsis MYB genes during Drought, PEG, NaCI, ABA and Cold treatments. The expression of four genes (erd10, rd22, ADH1 and AtP5CS1) known to be involved in osmotic stress response is also included. The positioning of five MYB genes along the ABA dependent and independent signal transduction cascades is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of t Arabidopsis MYB and MYC homologs in drought-and abscissic acid-regulated gene expression. Plant Cell 9: 1859–1868

    PubMed Central  CAS  PubMed  Google Scholar 

  • An Y-Q, Huang S, McDowell JM, McKinney EC, Meagher RB (1996) Conserved expression of the Arabidopsis ACT1 and ACT3 actin subclass in organ primordia and mature pollen. Plant Cell 8: 15–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5’-region of Arabidopsis thaliana corl 5a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant Mot Biol 24: 701–13

    Article  CAS  Google Scholar 

  • Bender J, Fink GR (1998) A Myb homologue, ATR1, activates tryptophan gene expression in Arabidopsis. Proc Natl Acad Sci USA 95: 5655–5660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berlyn MB, Last RL, Fink GR (1989) A gene encoding the tryptophan synthase B subunit of Arabidopsis thaliana Proc Natl Aced Sci USA 86: 4604–4608

    CAS  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2: 48–54

    Article  Google Scholar 

  • Cone KC, Burr FA, Burr B (1986) Molecular analysis of the maize anthocyanin regulatory locus Cl. Proc Natl Acad Sci USA 83: 9631–9635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dolferus R, Peacock WJ, Dennis ES (1994) Differential interactions of promoter elements in stress responses of the Arabidopsis ADH gene. Plant Physiol 105: 1075–1078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frohman MA (1990) RACE, rapid amplification of cDNAs ends. In PCR Protocols: A Guide to Methods and Application. M A Innis, D H Gelfand, J Sninsky and T J White. Academic Press, San Diego, CA. pp. 28–38

    Google Scholar 

  • Grotewold E, Drummond BJ, Bowen B, Peterson T (1994) The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic subset. Cell 76: 543–553

    Article  CAS  PubMed  Google Scholar 

  • Guiltinan MJ, Marcotte WR, Quatrano WS (1990) A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250: 267–271

    Article  CAS  PubMed  Google Scholar 

  • Hoeren FU, Dolferus R, Wu Y, Peacock WJ, Dennis ES (1998) Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genetics 149: 479–490

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ingram J, Bartels D (1996) The molecolar bases of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 377–403

    Article  CAS  PubMed  Google Scholar 

  • Ishitani M, Xiong L, Stevenson B, Zhu J-K (1997) Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9:1935–1949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iwasaki T, Yamaguchi-Shinozaki K, Shinozaki K (1995) Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis. Mol Gen Genet 247: 391–398

    Article  CAS  PubMed  Google Scholar 

  • Izawa T, Foster R, Chua N-H (1993) Plant bZIP protein DNA binding specificity. J Mol Biol 230: 1131–1144

    Article  CAS  PubMed  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology 17:287–291

    Article  CAS  PubMed  Google Scholar 

  • Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1994a) Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that responde rapidly to dehydration stress in Arabidopsis thaliana. Plant Cell Phisiol 35: 225–231

    CAS  Google Scholar 

  • Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1994b) Cloning of cDNA for genes that are early-responsive to dehydration stress (ERDs) in Arabidopsis thaliana L.: identification of three ERDs as HSP cognate genes.Plant Mol Biol 25: 791–798

    Article  CAS  PubMed  Google Scholar 

  • Kranz HD, Denekamp M, Greco R, Jin H-L, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C, Smeekens S, Tonelli C, Paz-Ares J, Weisshaar B (1998) Plant Journal Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant Journal 16: 263–276

    Article  CAS  PubMed  Google Scholar 

  • Larkin JC, Oppenheimer DG, Pollock S, Marks MD (1993) Arabidopsis GLABROUS I gene requires downstream sequences for function. Plant Cell 5: 1739–1748.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10: 1391–1406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin C, Paz-Ares J (1997) Myb transcription factors in plants. Trends in Genetics 13: 6773

    Google Scholar 

  • Mundy J, Yamaguchi-Shinozaki K, Chua NH (1990) Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice RAB gene. Proc Natl Acad Sci USA 87: 1406–1410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakashima K, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1997) A nuclear gene erdl encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally upregulated during senescence in Arabidopsis thaliana. Plant Journal 12: 851–861

    Article  CAS  PubMed  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Sanada Y, Wada K, Tsukaya H, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant Journal, 18: 185–193

    Article  CAS  PubMed  Google Scholar 

  • Noda ICI, Glover BJ, Linstead P, Martin C (1994) Flower colour intensity depends on specialized cell shape controlled by a myb-related transcription factor. Nature 369: 661–664

    Article  CAS  PubMed  Google Scholar 

  • Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H (1987) The regulatory Cl locus of Zea mays encodes a protein with homology to myb protooncogene products and with structural similarities to transcriptional activators. EMBO J 6: 3553–3558

    PubMed Central  CAS  PubMed  Google Scholar 

  • Prescott A, Martin C (1987) A rapid method for the quantitative assessment of levels of specific mRNAs in plants. Plant Mol Biol Rep 4: 219–224

    Article  CAS  Google Scholar 

  • Procissi A, Dolfini S, Ronchi A, Tonelli C (1997) Light-dependent spatial and temporal expression of pigment regulatory genes in developing maize seeds. Plant Cell 9: 1547–1557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romero I Fuertes A, Benito MJ, Malpica JM, Leyva A, Paz-Ares J (1998) More than 80R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana. Plant Journal 14: 273–284.

    Article  CAS  PubMed  Google Scholar 

  • Schiefelbein JW (1994) Cell fate and cell morphogenesis in higher plants. Curr Opin Genet Dev 4: 647–651

    Article  CAS  PubMed  Google Scholar 

  • Shen Q, Zhang P, Ho T-HD (1996) Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8: 1107–1119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular responses to drought and cold stress. Curr Opin Biotechnol 7: 161–167

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal trasduction in water-stress response. Plant Physiol 115: 327–334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strizhov N, Abrahãm E, Ökré;sz L, Blicklings, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1, AXR2 in Arabidopsis. Plant J 12: 557–569

    Article  CAS  PubMed  Google Scholar 

  • Thiele CJ, Cohen PS, Israel MA (1988) Regulation of c-myb expression in human neuroblastoma cells during retinoc acid-induced differentation. Mol & Cell Biol 8: 1677–1683

    CAS  Google Scholar 

  • Thomashow MF (1994) Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. In E Meyerowitz, C Somerville, eds, Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved myb recognition sequence. Plant Cell 5: 1529–1539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Mino M, Mundy J, Chua N-H (1990) Analysis of an ABA-responsive rice gene promoter in transgenic tobacco. Plant Mol Biol 15:905–912

    Article  CAS  PubMed  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for A’pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant Journal 7: 751–760

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cominelli, E., Gusmaroli, G., Conti, L., Allegra, D., Petroni, K., Tonelli, C. (2000). Role of Arabidopsis MYB transcription factors in osmotic stress. In: Cherry, J.H., Locy, R.D., Rychter, A. (eds) Plant Tolerance to Abiotic Stresses in Agriculture: Role of Genetic Engineering. NATO Science Series, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4323-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4323-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6567-9

  • Online ISBN: 978-94-011-4323-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics