Skip to main content

Evolution of Adaptive Systems

  • Conference paper
Astrobiology
  • 185 Accesses

Abstract

Adaptive systems are those biological and non-biological assemblages able to evolve by natural selection. They are formed by entities with the property to replicate with errors in such a way that these variants bias directly, or indirectly, their own frequency in later generations. Neo-Darwinism focused on the study of a single adaptive system, i.e.: populations of multicellular organisms with sexual reproduction and early somatic and germ line differentiation1. Evolutionary biologists however recognize that entities like genes, chromosomes, cells, organisms, kin, animal societies, cultural characters and computer programs are indeed able to evolve by differential reproductive success of heritable variants. The objective of this paper is to overview the main ideas and concepts dealing with the origin and evolution of individuality at different hierarchical levels of biological organization2. First, I’ll describe the evolutionary dynamics in three abstract spaces. This will led us to distinguish replicator versus interactor concepts and codical versus material domains. This will allow us too to introduce the problem of the units of selection and the concept of organism from an evolutionary perspective. After, I’ll follow sketch the major transitions in evolution, many of them originate the components of alternative adaptive systems. Cooperation and conflicts were recurrent processes guiding the construction of alliances between units of selection. Cooperation by kin selection, trait- group selection, reciprocal altruism and byproduct mutualism will be differentiated, at the same time fraternal and egalitarian alliances will be distinguished. Exceptions to cooperation and mechanisms to avoid selfish interest of free riders are also discussed. I’ll conclude with an outline of the alternative ways by which hereditary information was stored and transmitted during the course of biological evolution from one generation to the next.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aielo, L. and Dunbar, R. (1993) Neocortex size, group size and the evolution of language. Current Antrophology 34, 184–193.

    Article  Google Scholar 

  2. Alberch, P. (1980) Ontogenesis and morphological diversification. Amer. Zool. 20, 653–667.

    Google Scholar 

  3. Axelrod, R. and Hamilton, W. D. (1981) The evolution of cooperation. Science 211, 1390–1396.

    Article  PubMed  CAS  Google Scholar 

  4. Barlow, D. (1993) Methylation and imprinting: from host defense to gene regulation. Science 260, 310.

    Article  Google Scholar 

  5. Boehm, C. (1997) Impact of human egalitarian syndrom on Darwinian selection mechanics, Am. Nat. 150, S100–S121.

    Article  PubMed  Google Scholar 

  6. Buss, L. W. (1987) The evolution of individuality, Princeton, N.J., Princeton Univ. Press.

    Google Scholar 

  7. Chomsky, N. (1965) Aspects of the theory of syntax, MIT Press.

    Google Scholar 

  8. Connor, R. C. (1986) Pseudo-Reciprocity: investing in mutualism. Anim. Behav. 34, 1562–1566.

    Article  Google Scholar 

  9. Cosmides, L. and Tooby, J. (1981) Cytoplasmic inheritance and intragenomic conflict, J Theo. Biol 89, 83–129.

    Article  CAS  Google Scholar 

  10. Colwell, R. K. (1981) Group selection is implicated in the evolution of female-biased sex ratios, Nature 263, 401–404.

    Article  Google Scholar 

  11. Crow, J. F. (1979) Genes that violates Mendel’s laws, Sci. Am. 240, 134–146.

    Article  PubMed  CAS  Google Scholar 

  12. Darwin, C. R. (1859) On the origin of species, J. Murray, London.

    Google Scholar 

  13. Darwin, C. R. (1871) The descent of man and selection in relation to sex, J. Murray, London.

    Book  Google Scholar 

  14. Dawkins, R. (1976) The selfish gene, Oxford Univ. Press, Oxford.

    Google Scholar 

  15. Deacon, T. (1997) The symbolic species. The co-evolution of language and brain. Norton & Co. NY.

    Google Scholar 

  16. Dugatkin, L. A. (1997) Cooperation among animals. An evolutionary perspective, Oxford Series in Ecology and Evolution, Oxford Univ. Press, Oxford.

    Google Scholar 

  17. Dugatkin, L. A. and Mesterton-Gibbons, M. (1995) Cooperation among unrelated individuals: reciprocal altruism, byproduct mutualism and group selection in fishes, Biosystems 37, 19–30.

    Article  Google Scholar 

  18. Eberhard, W. G. (1980) Evolutionary consequences of intracellular organelle competition, Q. Rev. Biol. 55, 231–249.

    Article  PubMed  CAS  Google Scholar 

  19. Eigen, M. (1992) Steps towards life, Oxford Univ. Press, Oxford.

    Google Scholar 

  20. Eigen, M. and Schuster, P. (1979) The hypercycle, a principle of natural self-organization, Springer-Verlag, Berlin.

    Google Scholar 

  21. Eldredge, N. (1985) Unfinished Synthesis. Biological hierarchies and modern evolutionary thought, Oxford Univ. Press, Oxford.

    Google Scholar 

  22. Ewald, P. W. (1993) Adaptation and disease, Oxford Univ. Press, Oxford.

    Google Scholar 

  23. Fisher, R. (1930) The genetical theory of natural selection, Oxford Univ. Press, Oxford.

    Google Scholar 

  24. Fontana, W. and Buss, L. (1994) What would be conserved if “the tape were played twice”, PN AS 91, 757–761.

    CAS  Google Scholar 

  25. Frank, S. A. (1996) The design of natural and artificial adaptive systems, in M. Rose and G. Lauder (eds.), Adaptation, Academic Press, N.Y. pp. 451–505.

    Google Scholar 

  26. Frank, S. A. (1997) Models of symbiosis, Am. Nat. 150, S80–S99.

    Article  PubMed  Google Scholar 

  27. Frank, S. A. (1998) Foundations of social evolution, Princeton Univ. Press, Princeton, N. J..

    Google Scholar 

  28. Goodnight, C. J. and Stevens, L. (1997) Experimental studies of group selection: what do they tell us about group selection in nature?, Am. Nat. 150, S59–S79.

    Article  PubMed  Google Scholar 

  29. Gopnik, M. (1990) Feature-blind grammar and dysphasia, Nature 344, 71.

    Article  Google Scholar 

  30. Gould, S. J. (1989) Wonderful life. The burgess shale and the nature of life, Norton & Co. NY..

    Google Scholar 

  31. Hamilton, W. D. (1964) The genetical evolution of social behavior. I. J Theo. Biol. 7, 1–16.

    Article  CAS  Google Scholar 

  32. Hamilton, W. D. (1975) Innate social aptitudes of man: an approach from evolutionary genetics, in R. Fox (ed.), Biosocial Anthropology, Wiley, NY, pp. 133–155.

    Google Scholar 

  33. Hardin, G. (1968) The tragedy of commons, Science 162:1243–1248.

    Article  CAS  Google Scholar 

  34. Hull, D. L. (1980) Individuality and selection, Ann Rev. Ecol. Syst. 11:311–332.

    Article  Google Scholar 

  35. Hurst, L. (1996) Adaptation and selection of genomic parasites, in M. Rose and G. Lauder (eds.), Adaptation, Academic Press, N.Y. pp. 407–449.

    Google Scholar 

  36. Huynen, M. A., Stadler, P. F. and W. Fontana (1996) Smoothness within ruggedness. The role of neutrality in adaptation, PNAS 93, 397–401.

    Article  PubMed  CAS  Google Scholar 

  37. Jablonka E. and Lamb M. J. (1995) Epigenetic inheritance and evolution, the Lamarckian dimmension, Oxford Univ. Press. Oxford.

    Google Scholar 

  38. Jablonka, E. and Szathmáry, E. (1995) The evolution of information storage and heredity, TREE 10, 206–211.

    PubMed  CAS  Google Scholar 

  39. Jarvis J. U., O’Rian M. J., Bennett N C. and Sherman P. (1994). Mammalian eusociality. A family affair, TREE 9, 47–51.

    PubMed  CAS  Google Scholar 

  40. Keller, L. (1999) Levels of selection in evolution, Princeton Univ. Press, Princeton, N. J..

    Google Scholar 

  41. Leigh, E. G. (1977) How does selection reconcile individual advantage with the good of the group?, PNAS 74, 4524–4546.

    Article  Google Scholar 

  42. Leigh E. G. (1991) Genes, bees and ecosystems: the evolution of the common interest among individuals, TREE 6, 257–262.

    PubMed  Google Scholar 

  43. Lewontin, R. C. (1970) The units of selection, Ann Rev. Ecol. Syst. 1: 1–18.

    Article  Google Scholar 

  44. Lloyd, E. A. (1988) The structure and confirmation of evolutionary theory, Princeton Univ. Press, Princeton, N. J..

    Google Scholar 

  45. Lyttle, T. W. (1979) Experimental population genetics of meiotic drive systems. II. Accumulation of genetic modifiers of segregation distorter in laboratory populations. Genetics 91, 339–357.

    PubMed  CAS  Google Scholar 

  46. Lyttle, T. W. (1991) Segregation disorders. Ann Rev. Gen. 25, 511–557.

    Article  CAS  Google Scholar 

  47. Margulis, L. (1981) Symbiosis in cell evolution, W. H. Freeman, San Francisco.

    Google Scholar 

  48. May, R. M. and Anderson, R. M. (1983) Epidemiology and genetics in the coevolutionof parasites and hosts, Proc. R. Soc. Lond. B 219, 281–313.

    Article  PubMed  CAS  Google Scholar 

  49. Maynard Smith, J. (1978) The evolution of sex, Cambridge Univ. Press, London.

    Google Scholar 

  50. Maynard Smith, J. and and Szathmáry, E. (1993) The origin of chromosomes I. Selection for linkage, J Theo. Biol. 164, 437–446.

    Article  Google Scholar 

  51. Maynard Smith, J. and Szathmáry, E.(1995) The major transitions in evolution, W. H. Freeman, San Francisco.

    Google Scholar 

  52. Michod, R. E. (1997) Evolution of the individual, Am. Nat. 150, S5–S21.

    Article  PubMed  Google Scholar 

  53. Michod, R. E. (1999) Darwinian dynamics. Evolutionary transitions in fitness and individualitty, Princeton Univ. Press, Princeton, N. J..

    Google Scholar 

  54. Müller, H. J. (1964) The relation of recombination to mutational advance, Mutat. Res. 1, 2–9.

    Article  Google Scholar 

  55. Murray, J. D. (1993) Mathematical Biology, 2nd ed, Springer, Berlin.

    Book  Google Scholar 

  56. Packer C., Gilbert D. A., Pusey A. E. and O’Brian S. J. (1991) A molecular genetic analysis of kinship and cooperation in African lions, Nature 351, 562–565.

    Article  CAS  Google Scholar 

  57. Pinker, S. (1994) The language instinc, Morrow, N. Y.

    Google Scholar 

  58. Price, G. R. (1970) Selection and covariance, Nature 227, 529–531.

    Article  Google Scholar 

  59. Price, G. R. (1972) Extension of selection covariance mathematics, Ann. Hum. Genet. 35, 485–490.

    Article  PubMed  CAS  Google Scholar 

  60. Queller, D. C. (1997) Cooperation since, life began, Q. Rev. Biol. 72, 184–188.

    Article  Google Scholar 

  61. Rasa, O. A. (1983) Dwarf mongoose and hornbill mutualism in the Taru Desert, Kenya. Behav. Ecol. Sociob. 12, 181–190.

    Article  Google Scholar 

  62. Ratnieks, F. L. and Visscher, P. K. (1989) Worker policing in the honeybee, Nature 342, 796–797.

    Article  Google Scholar 

  63. Reeve, H. K. (1992). Queen activation of lazy workers in colonies of the eusocial naked mole-rat, Nature 358: 147–149.

    Article  PubMed  CAS  Google Scholar 

  64. Roughgarden, J. (1979). Theory of population genetics and evolutionary ecology: an introduction Macmillan, NewYork.

    Google Scholar 

  65. Schuster, P. (1996). How does complexity arise in evolution. Complexity. Pp. 22-30.

    Google Scholar 

  66. Seeley, T. D. (1997) Homey bee colonies are group level adaptive units, Am. Nat. 150, S22–S41.

    Article  PubMed  Google Scholar 

  67. Sober, E. and Wilson, D. S. (1998) Unto others. The evolution and psychology of unselfish behavior, Harvard Univ. Press, Cambridge.

    Google Scholar 

  68. Szathmáry, E. (1993) Coding coenzyme handles: a hypothesis for the origin of the genetic code, PNAS 90, 9916–9920.

    Article  PubMed  Google Scholar 

  69. Szathmáry, E. (1999) The first replicators, in L. Keller (ed.), Levels of selection in evolution, Princeton Univ. Press, Princeton, N. J., pp. 31–52.

    Google Scholar 

  70. Szathmáry E. and Demeter, L. (1987) Group selection of early replicators and the origin of life, J. Theor. Biol. 128, 463–486.

    Article  PubMed  Google Scholar 

  71. Trivers, R. L. (1971) The evolution of reciprocal altruism, Q. Rev. Biol. 46, 35–57.

    Article  Google Scholar 

  72. Trivers, R. L. and Hare, H. (1976) Haplodiploidy and the evolution of the social insects, Science 191, 249–263.

    Article  PubMed  CAS  Google Scholar 

  73. Wade, M. J. (1976) Group selection among laboratory populations of Tribolium, PNAS 73, 4604–4607.

    Article  CAS  Google Scholar 

  74. Williams, G. C. (1966) Adaptation and natural selection, Princeton Univ. Press, Princeton, N. J..

    Google Scholar 

  75. Williams, G. C. (1992) Natural selection: domains, levels and challenges, Oxford Univ. Press, Oxford.

    Google Scholar 

  76. Wilson, D.S. (1975) A theory of group selection, PNAS 72, 143–146.

    Article  PubMed  CAS  Google Scholar 

  77. Wilson, E. O. (1975) Sociobiology: the new synthesis, Belknap Press of Harvard Univ. Press, Cambridge, Mass.

    Google Scholar 

  78. Woolfenden, G. E. and FitzPatrick, J. W. (1984) The Florida scrub jay: demography of a cooperative-breeding bird, Princeton Univ. Press, Princeton, N. J.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Dopazo, H.J. (2000). Evolution of Adaptive Systems. In: Chela-Flores, J., Lemarchand, G.A., Oró, J. (eds) Astrobiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4313-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4313-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5865-0

  • Online ISBN: 978-94-011-4313-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics