Skip to main content

A New Set of Problems for a New Kind of Data

  • Chapter
Comparative Genomics

Part of the book series: Computational Biology ((COBO,volume 1))

  • 627 Accesses

Abstract

The oldest and still the single most frequent “bioinformatic” activity is the comparison of nucleotide or protein sequences, nowadays usually as part of a search for matches in large databanks. Despite the fact that it also involves differences between two linear orderings, the comparison of gene orders is a completely different enterprise. Sequence comparison pertains to strings of symbols drawn from a small alphabet, so that each symbol appears many times, whereas gene order comparisons compare permutations of n symbols, each symbol appearing only once (in the simplest case). Sequence comparison assumes that the strings being compared diverged through local changes such as substitution, insertion, and deletion, whereas gene orders diverged through rearrangement operations, such as inversion, transposition and translocation, affecting any number of terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bafna, V. and Pevzner, P. 1995. Sorting by transpositions. In Z. Galil and E. Ukkonen (eds.), Proc. 6th Annual ACM-SIAM Symposium on Combinatorial Pattern Matching, volume 937 of Lecture Notes in Computer Science, pp. 614–623. Springer Verlag, New York.

    Google Scholar 

  • Bafna, V. and Pevzner, P. 1996. Genome rearrangements and sorting by reversal. SIAM Journal on Computing 25:2272–2289.

    Article  Google Scholar 

  • Bengsston, B. O., Levan, K. K., and Levan, G. 1993. Measuring genome organization from synteny data. Cytogenetics and Cell Genetics 64:198–200.

    Article  Google Scholar 

  • Berman, P. and Hannenhalli, S. 1996. Fast sorting by reversals. In Proceedings of Combinatorial Pattern Matching — CPM’96.

    Google Scholar 

  • Blanchette, M., Kunisawa, T., and Sankoff, D. 1996. Parametric genome rearrangement. Gene 172:GC11–GC17.

    Article  PubMed  CAS  Google Scholar 

  • Caprara, A. 1997. Sorting by reversals is difficult. In Proceedings of the 1st Annual International Conference on Computational Molecular Biology (RECOMB 97), pp. 75–83. ACM, New York.

    Chapter  Google Scholar 

  • Caprara, A., Lancia, G., and Ng, S. K. 1995. A column-generation based branch-and-bound algorithm for sorting by reversals. Fourth DIMACS International Algorithm Implementation Challenge.

    Google Scholar 

  • Dalevi, D., Eriksen, N., Eriksson, K., and Andersson, S. 2000. Genome comparison: The number of evolutionary events separating C. pneumoniae and C. trachomatis.

    Google Scholar 

  • Dasgupta, B., Jiang, T., Kannan, S., Li, M., and Sweedyk, E. 1998. On the complexity and approximation of syntenic distance. Discrete Applied Mathematics 88:59–82.

    Article  Google Scholar 

  • Ehrlich, J., Sankoff, D., and Nadeau, J. H. 1997. Synteny conservation and chromosome rearrangements during mammalian evolution. Genetics 147:289–296.

    PubMed  CAS  Google Scholar 

  • El-Mabrouk, N., Nadeau, J. H., and Sankoff, D. 1998. Genome halving. In M. Farach-Colton (ed.), Combinatorial Pattern Matching, Ninth Annual Symposium, volume 1448 of Lecture Notes in Computer Science, pp. 235–250. Springer Verlag.

    Google Scholar 

  • Ferretti, V., Nadeau, J. H., and Sankoff, D. 1996. Original synteny. In 7th Annual Symposium on Combinatorial Pattern Matching, pp. 159–167.

    Google Scholar 

  • Goldberg, L. A., Goldberg, P. W., Paterson, M. S., Pevzner, P. A., Sahinalp, S. C., and Sweedyk, E. 1999. Complexity of gene placement. In Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, Maryland.

    Google Scholar 

  • Gu, Q.-P., Iwata, K., Peng, S., and Chen, Q.-M. 1997. A heuristic algorithm for genome rearrangements. In S. Miyano and T. Takagi (eds.), Genome Informatics 1997, pp. 268–269. Universal Academy Press, Tokyo.

    Google Scholar 

  • Hannenhalli, S. 1995. Polynomial-time algorithm for computing translocation distance between genomes. In Z. Galil and E. Ukkonen (eds.), Sixth Annual Symposium on Combinatorial Pattern Matching, volume 937 of Lecture Notes in Computer Science, pp. 162–176. Springer, Berlin.

    Chapter  Google Scholar 

  • Hannenhalli, S. and Pevzner, P. 1995a. Transforming men into mice (polynomial algorithm for genomic distance problem). In Proceedings of the IEEE 36th Annual Symposium on Foundations of Computer Science, pp. 581–592.

    Google Scholar 

  • Hannenhalli, S. and Pevzner, P. A. 1995b. Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). In Proceedings of the 27th Annual ACM-SIAM Symposium on the Theory of Computing, pp. 178–189.

    Google Scholar 

  • Horimoti, K., Mori, K., and Fukuchi, S. 1999. Measures for circular genome comparison. Information 2:83–90.

    Google Scholar 

  • Kaplan, H., Shamir, R., and Tarjan, R. E. 1997. Faster and simpler algorithm for sorting signed permutations by reversals. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 344–351. ACM, New York.

    Google Scholar 

  • Kececioglu, J. and Sankoff, D. 1994. Efficient bounds for oriented chromosome inversion distance. In Proceedings of the 5th Annual Symposium on Combinatorial Pattern Matching, volume 807 of Lecture Notes in Computer Science, pp. 162–176. Springer, Berlin.

    Google Scholar 

  • Kececioglu, J. and Sankoff, D. 1995. Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement. Algorithmica 13:180–210.

    Article  Google Scholar 

  • Kececioglu, J. D. and Ravi, R. 1995. Of mice and men: algorithms for evolutionary distance between genomes with translocations. In Proceedings of 6th ACM-SIAM Symposium on Discrete Algorithms, pp. 604–613.

    Google Scholar 

  • Liben-Nowell, D. 1999. On the structure of syntenic distance. In 10th Annual Symposium on Combinatorial Pattern Matching, pp. 43–56.

    Google Scholar 

  • Sankoff, D. 1992. Edit distance for genome comparison based on nonlocal operations. In Combinatorial Pattern Matching (CPM’92), volume 644 of Lecture Notes in Computer Science, pp. 121–135. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Sankoff, D. 1999. Genome rearrangements with gene families. Bioinformatics 15:909–917.

    Article  PubMed  CAS  Google Scholar 

  • Sankoff, D. and Blanchette, M. 1997. The median problem for breakpoints in comparative genomics. In T. Jiang and D. T. Lee (eds.), Computing and Combinatorics, Proceeedings of COCOON ‘97, volume 1276 of Lecture Notes in Computer Science, pp. 251–263. Springer, Berlin.

    Google Scholar 

  • Sankoff, D., Cedergren, R., and Abel, Y. 1990. Genome divergence through gene rearrangement. Methods in Enzymology 183:428–438.

    Article  PubMed  CAS  Google Scholar 

  • Sankoff, D., Ferretti, V., and Nadeau, J. H. 1997. Conserved segment identification. Journal of Computational Biology 559:559–565.

    Article  Google Scholar 

  • Sankoff, D. and Goldstein, M. 1989. Probabilistic models of genome snuffing. Bulletin of Mathematical Biology 51:117–124.

    PubMed  CAS  Google Scholar 

  • Sturtevant, A. H. and Novitski, E. 1941. The homologies of chromosome elements in the genus Drosophila. Genetics 26:517–541.

    PubMed  CAS  Google Scholar 

  • Walter, M. E., Dias, Z., and Meidanis, J. 1998. Reversal and transposition distance of linear chromosomes. In String Processing and Information Retrieval: A South American Symposium—SPIRE’98. Submitted to Journal of Computational Biology.

    Google Scholar 

  • Watterson, G., Ewens, W., Hall, T., and Morgan, A. 1982. The chromosome inversion problem. Journal of Theoretical Biology 99:1–7.

    Article  Google Scholar 

  • Zakharov, I. A., Nikiforov, V. I., and Stepanyuk, E. V. 1992. Homology and evolution of gene orders: combination measurement of synteny group similarity and simulation of the evolutionary process. Soviet Genetics 28:77–81.

    CAS  Google Scholar 

  • Zakharov, I. A., Nikiforov, V. I., and Stepanyuk, E. V. 1995. Interval estimates of combinatorial measures of similarity for orders of homologous genes. Genetika 31:1163–1167.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sankoff, D., Nadeau, J.H. (2000). A New Set of Problems for a New Kind of Data. In: Sankoff, D., Nadeau, J.H. (eds) Comparative Genomics. Computational Biology, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4309-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4309-7_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6584-6

  • Online ISBN: 978-94-011-4309-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics