Skip to main content

The M(Atrix) Model of M-Theory

  • Chapter
M-Theory and Quantum Geometry

Part of the book series: NATO Science Series ((ASIC,volume 556))

Abstract

These lecture notes give a pedagogical and (mostly) self-contained review of some basic aspects of the Matrix model of M-theory. The derivations of the model as a regularized supermembrane theory and as the discrete light-cone quantization of M-theory are presented. The construction of M-theory objects from matrices is described, and gravitational interactions between these objects are derived using Yang-Mills perturbation theory. Generalizations of the model to compact and curved space-times are discussed, and the current status of the theory is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Goldstone, unpublished; J. Hoppe, MIT Ph.D. thesis (1982); J. Hoppe, in proc. Int. Workshop on Constraint’s Theory and Relativistic Dynamics; eds. G. Longhi and L. Lusanna (World Scientific, 1987).

    Google Scholar 

  2. B. de Wit, J. Hoppe and H. Nicolai, Nucl. Phys B305 [FS 23] (1988) 545.

    Article  ADS  Google Scholar 

  3. T. Banks, W. Fischler, S. Shenker, and L. Susskind, “M Theory as a Matrix Model: A Conjecture,” Phys. Rev D55 (1997) 5112, hep-th/9610043.

    Google Scholar 

  4. T. Banks, “Matrix Theory,” Nucl. Phys. Proc. Suppl 67 (1998) 180, hep-th/9710231.

    Google Scholar 

  5. D. Bigatti and L. Susskind, “Review of matrix theory,” hep-th/9712072.

    Google Scholar 

  6. W. Taylor, “Lectures on D-branes, gauge theory and M(atrices),” Proceedings of Trieste summer school 1997, to appear; hep-th/9801182.

    Google Scholar 

  7. N. Obers and B. Pioline, “U-duality and M-theory,” Phys. Rep 318 (1999) 113, hep-th/9809039.

    Article  MathSciNet  ADS  Google Scholar 

  8. H. Nicolai and R. Helling, “Supermembranes and M(atrix) theory,” hep-th/9809103.

    Google Scholar 

  9. B. de Wit, “Supermembranes and super matrix models,” hep-th/9902051.

    Google Scholar 

  10. T. Banks, “TASI lectures on Matrix Theory,” hep-th/9911068.

    Google Scholar 

  11. E. Witten, “String Theory Dynamics in Various Dimensions,” Nucl. Phys B443 (1995) 85, hep-th/9503124.

    Google Scholar 

  12. E. Bergshoeff, E. Sezgin and P. K. Townsend, Ann. of Phys 185 (1988) 330.

    Article  MathSciNet  ADS  Google Scholar 

  13. M. J. Duff, “Supermembranes,” hep-th/9611203.

    Google Scholar 

  14. M. B. Green and J. H. Schwarz, Phys. Lett B136 (1984) 367; Nucl. Phys B243 (1984) 285.

    ADS  Google Scholar 

  15. M. B. Green, J. H. Schwarz and E. Witten, Superstring theory (Cambridge University Press, Cambridge, 1987).

    MATH  Google Scholar 

  16. B. de Wit, K. Peeters and J. Plefka “Superspace geometry for supermembrane backgrounds,” hep-th/9803209.

    Google Scholar 

  17. M. Claudson and M. Halpern, Nucl. Phys B250 (1985) 689.

    Article  MathSciNet  ADS  Google Scholar 

  18. R. Flume, Ann. of Phys 164 (1985) 189.

    Article  MathSciNet  ADS  Google Scholar 

  19. M. Baake, P. Reinicke and V. Rittenberg, J. Math. Phys 26 (1985) 1070.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. K. Fujikawa and K. Okuyama, “On a Lorentz covariant matrix regularization of membrane theories,” hep-th/9706027; “50(9, 1) invariant matrix formulation of supermembrane,” hep-th/9709044;.

    Google Scholar 

  21. B. de Wit, M. Luscher and H. Nicolai, Nucl. Phys B320 (1989) 135.

    Article  ADS  Google Scholar 

  22. S. Sethi and M. Stern, “D-brane Bound States Redux,” hep-th/9705046.

    Google Scholar 

  23. C. M. Hull and P. K. Townsend, Nucl. Phys B438 (1995) 109, hep-th/9410167.

    Article  MathSciNet  ADS  Google Scholar 

  24. M. J. Duff, J. T. Liu and R. Minasian, Nucl. Phys B452 (1995) 261, hep-th/9506126.

    Google Scholar 

  25. J. H. Schwarz, Phys. Lett 367 (1996) 97, hep-th/9510086.

    Article  MathSciNet  Google Scholar 

  26. P. Horava and E. Witten, Nucl. Phys B460 (1996) 506, hep-th/9510209.

    Article  MathSciNet  ADS  Google Scholar 

  27. E. Cremmer, B. Julia and J. Scherk, Phys. Lett B76 (1978) 409.

    ADS  Google Scholar 

  28. P. K. Townsend, Phys. Lett B373 (1996) 68, hep-th/9512062.

    Google Scholar 

  29. L. Susskind, “Another Conjecture about M(atrix) Theory,” hep-th/9704080.

    Google Scholar 

  30. M. R. Douglas, D. Kabat, P. Pouliot, and S. Shenker, “D-Branes and Short Distances in String Theory,” Nucl. Phys B485 (1997) 85, hep-th/9608024.

    Article  MathSciNet  ADS  Google Scholar 

  31. N. Prezas and W. Taylor, in preparation.

    Google Scholar 

  32. N. Seiberg, “Why is the Matrix Model Correct?,” Phys. Rev. Lett 79 (1997) 3577, hep-th/9710009.

    Google Scholar 

  33. A. Sen, “DO Branes on Tr’ and Matrix Theory,” Adv. Theor. Math. Phys 2 (1998) 51, hep-th/9709220.

    MathSciNet  MATH  Google Scholar 

  34. J. Plefka and A. Waldron, “On the quantum mechanics of M(atrix) theory,” Nucl. Phys B512 (1998) 460, hep-th/9710104.

    Article  MathSciNet  ADS  Google Scholar 

  35. M. Porrati and A. Rozenberg, “Bound states at threshold in supersymmetric quantum mechanics,” hep-th/9708119.

    Google Scholar 

  36. M. Green and M. Gutperle, “D-particle bound states and the D-instanton measure,” hep-th/9711107.

    Google Scholar 

  37. G. Moore, N. Nekrasov and S. Shatashvili “D-particle bound states and generalized instantons,” hep-th/9803265.

    Google Scholar 

  38. V. G. Kac and A. V. Smilga, “Normalized vacuum states in N = 4 supersymmetric quantum mechanics with any gauge group,” hep-th/9908096.

    Google Scholar 

  39. A. Hanany, B. Kol and A. Rajaraman, “Orientifold points in M-theory,” JHEP 9910 (1999) 027, hep-th/9909028.

    Article  MathSciNet  ADS  Google Scholar 

  40. M. R. Douglas, “Branes within Branes,” in Cargese 97: Strings, branes and dualities p. 267, hep-th/9512077.

    Google Scholar 

  41. D. Kabat and W. Taylor, “Spherical membranes in Matrix theory,” Adv. Theor. Math. Phys 2, 181–206, hep-th/9711078.

    Google Scholar 

  42. D. B. Fairlie, P. Fletcher and C. K. Zachos, “Trigonometric Structure Constants For New Infinite Algebras,” Phys. Lett B218, (1989) 203.

    MathSciNet  ADS  Google Scholar 

  43. D. B. Fairlie and C. K. Zachos, “Infinite Dimensional Algebras, Sine Brackets And SU(Infinity),” Phys. Lett B224, (1989) 101.

    MathSciNet  ADS  Google Scholar 

  44. D. B. Fairlie, P. Fletcher and C. K. Zachos, “Infinite Dimensional Algebras And A Trigonometric Basis For The Classical Lie Algebras,” J. Math. Phys 31, (1990) 1088.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. L. Cornalba and W. Taylor, “Holomorphic curves from matrices,” Nucl. Phys B536 (1998) 513–552, hep-th/9807060.

    Article  MathSciNet  ADS  Google Scholar 

  46. T. Banks, N. Seiberg, and S. Shenker, “Branes from Matrices,” Nucl. Phys B497 (1997) 41, hep-th/9612157.

    Article  MathSciNet  ADS  Google Scholar 

  47. Y. Imamura, “A comment on fundamental strings in M(atrix) theory,” Prog. Theor. Phys 98 (1997) 677, hep-th/9703077.

    Google Scholar 

  48. O. J. Ganor, S. Ramgoolam and W. Taylor, “Branes, Fluxes and Duality in M(atrix)-Theory,” Nucl. Phys B492 (1997) 191–204; hep-th/9611202.

    Google Scholar 

  49. W. Taylor and M. Van Raamsdonk, “Multiple Dp-branes in weak background fields,” hep-th/9910052.

    Google Scholar 

  50. M. Berkooz and M. R. Douglas, “Five-branes in M(atrix) Theory,” hep-th/9610236.

    Google Scholar 

  51. J. Castelino, S. Lee and W. Taylor, “Longitudinal 5-branes as 4-spheres in Matrix theory,” Nucl. Phys B526 (1998) 334–350, hep-th/9712105.

    Article  MathSciNet  ADS  Google Scholar 

  52. H. Grosse, C. Klimcik, P. Presnajder, “On finite 4D quantum field theory in non-commutative geometry,” hep-th/9602115.

    Google Scholar 

  53. T. Banks and A. Casher, Nucl. Phys B167 (1980) 215.

    Article  MathSciNet  ADS  Google Scholar 

  54. V. P. Nair and S. Randjbar-Daemi, “On brane solutions in M(atrix) theory,” hep-th/9802187.

    Google Scholar 

  55. W. Taylor and M. Van Raamsdonk, “Angular momentum and long-range gravitational interactions in Matrix theory,” Nucl. Phys B532 (1998) 227–244, hep-th/9712159.

    Article  ADS  Google Scholar 

  56. D. Kabat and W. Taylor, “Linearized supergravity from Matrix theory,” Phys. Lett B426 (1998) 297–305, hep-th/9712185.

    MathSciNet  ADS  Google Scholar 

  57. R. C. Myers, “Dielectric-branes,” hep-th/9910053.

    Google Scholar 

  58. L. Susskind, Talk at Strings ‘87.

    Google Scholar 

  59. P. Berglund and D. Minic, “A note on effective Lagrangians in matrix theory,” Phys. Lett B415 (1997) 122, hep-th/9708063.

    MathSciNet  ADS  Google Scholar 

  60. M. Serone, “A Comment on the R4 Coupling in M(atrix) Theory,” Phys. Lett B422 (1998) 88, hep-th/9711031.

    Google Scholar 

  61. E. Keski-Vakkuri and P. Kraus, “Short distance contributions to graviton-graviton scattering: Matrix theory versus supergravity,” hep-th/9712013.

    Google Scholar 

  62. K. Becker and M. Becker, “On Graviton Scattering Amplitudes in M-theory,” Nucl. Phys B506 (1997) 48, hep-th/9712238.

    Article  ADS  Google Scholar 

  63. R. Helling, J. Plefka, M. Serone and A. Waldron, “Three graviton scattering in M-theory,” Nucl. Phys B559 (1999) 184; hep-th/9905183.

    Article  MathSciNet  ADS  Google Scholar 

  64. L. F. Abbott, “Introduction to the background field method,” Acta Phys. Polon B13 (1982) 33; “The background field method beyond one loop,” Nucl. Phys B185 (1981) 189.

    Article  ADS  Google Scholar 

  65. W. Taylor and M. Van Raamsdonk, “Supergravity currents and linearized interactions for matrix theory configurations with fermion backgrounds,” JHEP 9904 (1999) 013, hep-th/9812239.

    ADS  Google Scholar 

  66. K. Becker and M. Becker, “A Two-Loop Test of M(atrix) Theory,” Nucl. Phys B506 (1997) 48–60, hep-th/9705091.

    Article  ADS  Google Scholar 

  67. M. Van Raamsdonk, “Conservation of supergravity currents from matrix theory,” Nucl. Phys B542 (1999) 262, hep-th/9803003.

    Article  ADS  Google Scholar 

  68. S. Hellerman and J. Polchinski, “Compactification in the Lightlike Limit,” hep-th/9711037.

    Google Scholar 

  69. W. Taylor, “Adhering 0-branes to 6-branes and 8-branes,” Nucl. Phys B508 (1997) 122–132; hep-th/9705116.

    Article  Google Scholar 

  70. V. Balasubramanian, D. Kastor, J. Traschen and K. Z. Win, “The spin of the M2-brane and spin-spin interactions via probe techniques,” hep-th/9811037.

    Google Scholar 

  71. P. Kraus, “Spin-Orbit interaction from Matrix theory,” hep-th/9709199.

    Google Scholar 

  72. S. Paban, S. Sethi and M. Stern, “Constraints from extended supersymmetry in quantum mechanics,” Nucl. Phys B534 (1998) 137, hep-th/9805018.

    Article  MathSciNet  ADS  Google Scholar 

  73. J. Plefka, M. Serone and A. Waldron, “D = 11 SUGRA as the low energy effective action of Matrix Theory: three form scattering,” hep-th/9809070.

    Google Scholar 

  74. K. Becker, M. Becker, J. Polchinski, and A. Tseytlin, “Higher Order Graviton Scattering in M(atrix) Theory,” Phys. Rev D56 (1997) 3174, hep-th/9706072.

    MathSciNet  ADS  Google Scholar 

  75. K. Becker and M. Becker, “Complete solution for M(atrix) Theory at two loops,” JHEP 9809:019 (1998), hep-th/9807182

    Article  ADS  Google Scholar 

  76. S. Paban, S. Sethi and M. Stern, “Supersymmetry and higher-derivative terms in the effective action of Yang-Mills theories,” JHEP 9806:012 (1998), hep-th/9806028.

    Article  MathSciNet  ADS  Google Scholar 

  77. S. Hyun, Y. Kiem and H. Shin, “Supersymmetric completion of supersymmetric quantum mechanics,” hep-th/9903022.

    Google Scholar 

  78. M. Dine and N. Seiberg, “Comments on higher derivative operators in some SUSY field theories,” Phys. Lett B409 (1997) 239, hep-th/9705057.

    MathSciNet  ADS  Google Scholar 

  79. I. Chepelev and A. Tseytlin, “Long-distance interactions of branes: correspondence between supergravity and super Yang-Mills descriptions,” hep-th/9709087.

    Google Scholar 

  80. E. Keski-Vakkuri and P. Kraus, “Born-Infeld actions from Matrix theory,” hep-th/9709122.

    Google Scholar 

  81. V. Balasubramanian, R. Gopakumar and F. Larsen, “Gauge theory, geometry and the large N limit,” hep-th/9712077.

    Google Scholar 

  82. I. Chepelev and A. Tseytlin, “On Membrane Interaction in Matrix Theory,” hep-th/9801120.

    Google Scholar 

  83. M. Dine and A. Rajaraman, “Multigraviton Scattering in the Matrix Model,” hep-th/9710174.

    Google Scholar 

  84. W. Taylor and M. Van Raamsdonk, “Three-graviton scattering in Matrix theory revisited,” Phys. Lett B438 (1998), 248–254, hep-th/9806066.

    ADS  Google Scholar 

  85. Y. Okawa and T. Yoneya, “Multibody interactions of D-particles in supergravity and matrix theory,” Nucl. Phys B538 (1999) 67, hep-th/9806108.

    Article  MathSciNet  ADS  Google Scholar 

  86. Y. Okawa and T. Yoneya, “Equations of motion and Galilei invariance in D-particle dynamics,” hep-th/9808188.

    Google Scholar 

  87. M. Dine, R. Echols and J. P. Gray, “Tree level supergravity and the matrix model,” hep-th/9810021.

    Google Scholar 

  88. . J Polchinski and P. Pouliot, “Membrane Scattering with M-Momentum Transfer,” hep-th/9704029.

    Google Scholar 

  89. N. Dorey, V. V. Khoze and M. P. Mattis, Nucl. Phys B502 (1997) 94–106, hep-th/9704197.

    Article  MathSciNet  ADS  Google Scholar 

  90. T. Banks, W. Fischler, N. Seiberg, and L. Susskind, Phys. Lett B408 (1997) 111–116, hep-th/9610043.

    MathSciNet  ADS  Google Scholar 

  91. S. Hyun, Y. Kiem and H. Shin, “Effective action for membrane dynamics in DLCQ M-theory on a two torus,” Phys. Rev D59 (1999) 021901,hep-th/9808183.

    MathSciNet  ADS  Google Scholar 

  92. E. Keski-Vakkuri and P. Kraus, “M-momentum transfer between gravitons, membranes, and 5-branes as perturbative gauge theory processes,” hep-th/9804067.

    Google Scholar 

  93. W. Taylor, “D-brane Field Theory on Compact Spaces,” Phys. Lett B394 (1997) 283; hep-th/9611042.

    Google Scholar 

  94. J. Dai, R. G. Leigh, and J. Polchinski, Mod. Phys. Lett A4 (1989) 2073.

    MathSciNet  ADS  Google Scholar 

  95. E. Witten, “Bound States of Strings and p-Branes,” Nucl. Phys B460 (1996) 335, hep-th/9510135.

    Google Scholar 

  96. A. Connes, M. R. Douglas and A. Schwarz, “Noncommutative geometry and Matrix theory: compactification on tori,” hep-th/9711162.

    Google Scholar 

  97. M. R. Douglas and C. Hull, “D-branes and the noncommutative torus,” hep-th/9711165.

    Google Scholar 

  98. P.-M. Ho, Y.-Y. Wu and Y.-S. Wu, “Towards a noncommutative approach to matrix compactification,” hep-th/9712201.

    Google Scholar 

  99. Y.-K. E. Cheung and M. Krogh, “Noncommutative geometry from 0-branes in a background B field,” Nucl. Phys B528, 185 (1998), hep-th/9803031.

    Article  MathSciNet  ADS  Google Scholar 

  100. N. Seiberg and E. Witten, “String theory and noncommutative geometry,” JHEP 9909:032 (1999), hep-th/9908142.

    Article  MathSciNet  ADS  Google Scholar 

  101. S. Sethi and L. Susskind, Phys. Lett B400 (1997) 265–268, hep-th/9702101.

    MathSciNet  ADS  Google Scholar 

  102. P. Aspinwall, “Some relationships between dualities in string theory,” hep-th/9508154.

    Google Scholar 

  103. J. H. Schwarz, Phys. Lett B360 (1995) 13, Erratum-ibid. B364 (1995) 252, hep-th/9508143.

    Google Scholar 

  104. L. Susskind, “T-duality in M(atrix)-theory and S-duality in Field Theory,” hep-th/9611164.

    Google Scholar 

  105. W. Fischler, E. Halyo, A. Rajaraman and L. Susskind, “The Incredible Shrinking Torus,” hep-th/9703102.

    Google Scholar 

  106. M. Rozali, “Matrix theory and U-duality in seven dimensions,” hep-th/9702136.

    Google Scholar 

  107. N. Seiberg, “Notes on Theories with 16 Supercharges,” hep-th/9705117.

    Google Scholar 

  108. S. Kachru, A. Lawrence and E. Silverstein, “On the Matrix Description of CalabiYau Compactifications,” hep-th/9712223.

    Google Scholar 

  109. M. R. Douglas, H. Ooguri and S. Shenker, “Issues in M(atrix) Theory Compactification,” Phys. Lett B402 (1997) 36, hep-th/9702203.

    MathSciNet  ADS  Google Scholar 

  110. M. R. Douglas, “D-branes in curved space,” Adv. Theor. Math. Phys 1 (1998) 198, hep-th/9703056.

    Google Scholar 

  111. M. R. Douglas, “D-branes and matrix theory in curved space,” hep-th/9707228.

    Google Scholar 

  112. M. R. Douglas, A. Kato and H. Ooguri, “D-brane actions on Kaehler manifolds,” Adv. Theor. Math. Phys. 1 (1998) 237, hep-th/9708012.

    MathSciNet  Google Scholar 

  113. M. R. Douglas and H. Ooguri, “Why Matrix Theory is Hard,” Phys. Lett B425 (1998) 71, hep-th/9710178.

    ADS  Google Scholar 

  114. G. Lifschytz, “DLCQ-M(atrix) Description of String Theory, and Supergravity,” hep-th/9803191.

    Google Scholar 

  115. E. Cremmer and S. Ferrara, Phys. Lett B91 (1980) 61

    MathSciNet  ADS  Google Scholar 

  116. K. Millar and W. Taylor, in preparation.

    Google Scholar 

  117. W. Taylor and M. Van Raamsdonk, “Multiple DO-branes in weakly curved backgrounds,” hep-th/9904095.

    Google Scholar 

  118. S. Sethi and M. Stern, “Supersymmetry and the Yang-Mills effective action at finite N,” hep-th/9903049.

    Google Scholar 

  119. B. de Wit, V. Marquard and H. Nicolai, Comm. Math. Phys 128 (1990) 39.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  120. D. Lowe, “Constraints on higher derivative operators in the matrix theory effective Lagrangian,” hep-th/9810075.

    Google Scholar 

  121. J. Polchinski, “M-theory and the light cone,” Prog. Theor. Phys. Suppl 134 (1999) 158, hep-th/9903165.

    Google Scholar 

  122. L. Susskind, “Holography in the flat space limit,” hep-th/9901079.

    Google Scholar 

  123. N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, “A Large-N Reduced Model as Superstring,” hep-th/9612115.

    Google Scholar 

  124. R. Dijkgraaf, E. Verlinde, H. Verlinde, Nucl. Phys B500 (1997) 43–61, hep-th/9703030.

    Article  MathSciNet  ADS  Google Scholar 

  125. J. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231, hep-th/9711200.

    Google Scholar 

  126. T. Banks, W. Fischler, I. R. Klebanov and L. Susskind, “Schwarzschild black holes from Matrix theory,” hep-th/9709091.

    Google Scholar 

  127. D. Kabat and G. Lifschytz, “Approximations for strongly coupled supersymmetric quantum mechanics,”, hep-th/9910001.

    Google Scholar 

  128. M. B. Halpern and C. Schwartz, “Asymptotic search for ground states of SU(2) matrix theory,” Int. J. Mod. Phys A13 (1998) 4367, hep-th/9712133.

    MathSciNet  ADS  Google Scholar 

  129. J. Frohlich, G. M. Graf, D. Hasler and J. Hoppe, “Asymptotic form of zero energy wave functions in supersymmetric matrix models,” hep-th/9904182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Taylor, W. (2000). The M(Atrix) Model of M-Theory. In: Thorlacius, L., Jonsson, T. (eds) M-Theory and Quantum Geometry. NATO Science Series, vol 556. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4303-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4303-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6475-7

  • Online ISBN: 978-94-011-4303-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics