Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 73))

  • 298 Accesses

Abstract

The wafer bonding technique was originally developed to produce SOI substrates, in which case hydrophilic oxide-to-oxide bonding is involved. Later on it became possible to bond other types of materials including bare (hydrogen terminated) silicon, compound semiconductors and nitride materials. Now wafer bonding is used to produce not only SOI substrates, but high-voltage silicon devices, optical devices, and micro-electromechanical systems. In this paper a review of the various processes for microfabrication of micro-electro-mechanical systems (MEMS) devices will reveal that silicon direct wafer (SDB) bonding combined with techniques such as bulk and surface micromachining, has added advantages for three-dimensional applications. We will report results showing that SDB can be used for the construction of complex structures. Furthermore, we will discuss the advantages of nitride bonding and present examples of practical applications utilizing this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Klaasen, K. Petersen, J.M. Noworolski, J. Logan, N.I. Maluf, J. Brown, S. Storment, W. McCulley and G.T.A. Kovacs (1996) Silicon fusion bonding and deep reactive ion etching: a new technology for microstructures, Sensors and Actuators A, 52, 132–139

    Article  Google Scholar 

  2. Y. Lindén, L. Tenerz, J. Tirén and B. Höik (1989) Fabrication of three-dimensional structures by means of doping-selective etching (DSE), Sensors and Actuators A, 16, 83–88

    Article  Google Scholar 

  3. P.W. Green, R.R.A. Syms and E.M. Yeatman (1995) Demonstration of threedimensional microstructure self-assembly, J. Microelectromechanical Systems, 4-4, 170–176

    Article  Google Scholar 

  4. Y.B. Gianchandani, and K. Najafi (1992) A bulk silicon dissolved wafer process for micromechanical devices, J. Microelectromechanical Systems, 1-2, 77–85

    Article  Google Scholar 

  5. H. Miyajima and M. Mehregany (1995) High-aspect-ratio photolithography for MEMS applications, J. Microelectromechanical Systems, 4-4, 220–229

    Article  Google Scholar 

  6. U. Gösele, J. Haisma, M. Schmidt and T. Abe, eds. (1992) First Int. Symp. Semiconductor Wafer Bonding: Science, Technology and Applications, Electrochem. Soc. Proc. 92-7

    Google Scholar 

  7. H. Baumgart, Ch. Hunt, M. Schmidt and T. Abe, eds. (1993) Second Int. Symp. Semiconductor Wafer Bonding: Science, Technology and Applications, Electrochem. Soc. Proc. 93-29

    Google Scholar 

  8. H. Baumgart, Ch. Hunt, S. Iyer, U. Gösele and T. Abe, eds. (1995) Third Int. Symp. Semiconductor Wafer Bonding: Science, Technology and Applications, Electrochem. Soc. Proc. 95-7

    Google Scholar 

  9. U. Gösele, H. Baumgart, Ch. Hunt, T. Abe, eds. (1997) Fourth Int. Symp. Semiconductor Wafer Bonding: Science, Technology and Applications, Electrochem. Soc. Proc. 98-36

    Google Scholar 

  10. U. Gösele, H. Stenzel, M. Reiche, T. Martini, H. Steinkirchner and Q.Y. Tong (1996) History and future of semiconductor wafer bonding, Solid State Phenomena 47/48, 33–44

    Article  Google Scholar 

  11. F.S. d’Aragona and L. Ristic (1994) In Sensor Technology and Devices, ed. L Ristic, Boston: Artech House, 157–201.

    Google Scholar 

  12. J. Haisma, B.A.C.M. Spierings, U.K.P. Biermann and A.A. van Gorkum (1994) Diversity and feasibility of direct bonding: a survey of a dedicated optical technology, Appl. Optics 33, 1154–1169

    Article  CAS  Google Scholar 

  13. W.P. Maszara (1991) Silicon-on-insulator by wafer bonding: a review, J. Electrochem. Soc. 138, 341–347

    Article  CAS  Google Scholar 

  14. Special Issue on Direct Bonding (1995) Philips Journal of Research 49, 1–182

    Google Scholar 

  15. J.B. Lasky, S.R. Stiffler, F.R. White, F.R. Abernathery (1985) Silicon-on-Insulator (SOI) by Bonding and Etch-Back, IEDM Tech. Dig., 684–687

    Google Scholar 

  16. G. Cha, W.S. Yang, D. Feijo, W.J. Taylor, R. Stengl, and U. Gösele (1992) Electrochem. Soc. Proc. 92-7, 249

    CAS  Google Scholar 

  17. R. Stengl, T. Tan, and U. Gösele (1989) A Model for the Silicon Wafer Bonding Process, Jpn. J. of Appl. Physics, 28-10, 1735–1741

    Article  Google Scholar 

  18. W.P. Maszara, G. Goetz, A. Cavigilia, and J.B. McKitterick (1988) Bonding of Silicon Wafers for Silicon-on-Insulator, J. Appl. Phys., 64-10, p. 4943–4950

    Article  Google Scholar 

  19. Q.Y. Tong, L.J. Kim, T.H. Lee and U. Gösele (1998) Low-vacuum wafer bonding, Electrochem Solid-State Letters 1, 52–53

    Article  CAS  Google Scholar 

  20. V.L. Spiering, J.W. Berenschot, M. Elwenspoek and J.H.J. Fluitman (1995) Sacrificial wafer bonding for planarization after very deep etching, J. Microelectromechanical Systems, 4–3, 151–157

    Article  Google Scholar 

  21. T. Fujii, Y. Gotoh and S. Kuroyanagi (1992) Fabrication of microdiaphragm pressure sensor utilizing micromachining, Sensors and Actuators A, 34, 217–224

    Article  Google Scholar 

  22. Y. Matsumoto, M. Iwakiri, H. Tanaka, M. Ishida and T. Nakamura (1996) A capacitive accelerometer using SDB-SOI structure, Sensors and Actuators A, 53, 267–272

    Article  Google Scholar 

  23. W. Maszara,, G. Goetz, A. Caviglia and J.B. McKitterick (1988) Bonding of silicon wafers for Silicon-on-Insulator, J. Appl. Phys., 64-10, 4943–4950

    Article  Google Scholar 

  24. C.A. Desmond, J.J. Olup, P. Abolghasem, J. Folta and G. Jernigan (1997) Analysis of nitride bonding, Electrochemical Society Proceedings, 98-36, 171–178

    Google Scholar 

  25. D.W. Burns, H. Guckel, “Thin films for micromechanical sensors”, J. Vac. Sci. Tech. A, 8 (4), p. 3606, July 1990

    Article  CAS  Google Scholar 

  26. S. Sugiyama, I. Igarashi, “Micromachining and Its Application for Pressure Sensors”, Extended Abstracts of the 21st Conference on Solid State Devices and Materials, p. 189, Tokyo, 1989

    Google Scholar 

  27. R. Schellin, G. Hess, “A silicon subminiature microphone based on piezoresistive polysilicon strain gauges”, Sensors and Actuators A, 32, p. 555, 1992

    Article  Google Scholar 

  28. P. Murphy et al., “Subminiature Silicon Integrated Electret Capacitor Microphone”, IEEE Trans. on Electrical Insulation, 24 (3), p. 495, June 1989

    Article  Google Scholar 

  29. G. Blasquez et al., “Capabilities and Limits of Silicon Pressure Sensors”, Sensors and Actuators A, 17, p. 387, 1989

    Article  Google Scholar 

  30. C.A. Desmond, R. Mlcak and D. Franz (1995) Fabrication of a high-sensitivity pressure sensor with nitride membranes and single-crystal piezoresistors using wafer bond and etch back, Electrochemical Society Proceedings 98-36, 509–517

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Colinge, C.A. (2000). Wafer Bonding for Micro-ElectroMechanical Systems (MEMS). In: Hemment, P.L.F., Lysenko, V.S., Nazarov, A.N. (eds) Perspectives, Science and Technologies for Novel Silicon on Insulator Devices. NATO Science Series, vol 73. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4261-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4261-8_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6117-6

  • Online ISBN: 978-94-011-4261-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics