Skip to main content

Electrical Instabilities in Silicon-on-Insulator Structures and Devices During Voltage and Temperature Stressing

  • Chapter
Perspectives, Science and Technologies for Novel Silicon on Insulator Devices

Part of the book series: NATO Science Series ((ASHT,volume 73))

Abstract

Electrical instabilities in silicon-on-insulator (SOI) materials and devices during voltage and thermal stressing are fundamentally due to the movement and trapping of charge in the buried oxide (BOX), this being electrically the least robust part of the SOI structures. These processes will be controllerd both by the intrinsic structure and the impurity composition of the BOX and by the properties of the BOX/semiconductor interfaces and charge trapping into the BOX after the charge injection from outer layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Litovchenko, V.G. and Gorban A.P. (1978) The basis of MOS microelectronic system physics, ≪Naukova Dumka≫, Kiev (in Russian).

    Google Scholar 

  2. Edelman, F.L. (1980) Structure of LICs components, Nauka, Novosibirsk (in Russian).

    Google Scholar 

  3. Revesz, A.G. (1980) The defect structure of vitreous SiO2 films on silicon, part I, Phys. Stat. Sol. A 57, 235–243.

    Article  CAS  Google Scholar 

  4. Aujla, R., Dupree, R., Farnan, I. And Holland, D. (1988) A comparison of the structure of a-SiO2 prepared by different routes, in R.A.B. Devine (ed.), The Physics and Technology of Amorphous SiO 2, Plenum, New York, pp.77–82.

    Google Scholar 

  5. Revesz, A.G. and Gibbs, G.V. (1980) Structure and bond flexibility of vitreous SiO2 films, in G. Lukovsky, S.T. Pantelides and F.L. Galeena (eds.), The Physics of MOS Insulators, Pergamon, New York, pp. 92–96.

    Google Scholar 

  6. Grunthaier, F.J., Levis, B.F., Zamini, N., Maserjian, I. And Madhukar, A. (1980), XPS studies of structure-induced radiation effects at the Si-SiO2 interface, IEEE Trans. Nucl. Sci. NS-27, 1640–1646.

    Article  Google Scholar 

  7. Revesz, A.G. and Hughes, H.L. (1995) The defect structure of buried oxide layers in SIMOX and BESOI structures, in J.P. Colinge at al. (eds.), Physical and Technical Problems of SOI Structures and Devices, Kluwer, Dordrecht, pp. 133–156.

    Chapter  Google Scholar 

  8. Afanas’ev, V.V., Stesmans, A. and Twigg, M.E. (1996) Epitaxial growth of SiO2 produced in silicon by oxygen ion implantation, Phys. Rev. Lett. 77, 4206–4209.

    Article  CAS  Google Scholar 

  9. Afanas’ev, V.V., Stesmans, A., Revesz, A.G. and Hughes, H.L. (1997) Structural inhomogenity and silicon enrichment of buried SiO2 layers formed by oxygen ion implantation in silicon, J.Appl. Phys. 82, 2184–2199.

    Article  CAS  Google Scholar 

  10. Boutry-Forveille, A., Nazarov, A. and Ballutaud, D. (1998) Deuterium diffusion, trapping, and stability in buried siicon oxide layers, in N.H. Nickel et al. (eds.), Hydrogen in Semiconductors and Metals, V.513, MRS, Pennsylvania, pp. 319–324.

    Google Scholar 

  11. Fedoseenko, S.I., Adamchuk, V.K. and Afanas’ev, V.V. (1993) Silicon clusters as photoactive traps in buried oxide layers of SIMOX structures, Microelectr. Eng. 22, 367–370.

    Article  CAS  Google Scholar 

  12. Ngwa, C.S. and Hall, S. (1994) Electron trapping studies in multiple-and singleimplant SIMOX oxides, Semicond. Sci. Technol. 9, 1069–1079.

    Article  CAS  Google Scholar 

  13. Revesz, A.G., Brown, G.A. and Hughes, H.L. (1993) Bulk electrical conduction in buried oxide of SIMOX structures, J. Electrochem. Soc. 140, 3222–3229.

    Article  CAS  Google Scholar 

  14. Griscom, D.L. (1989) Self-trapped holes in amorphous silicon dioxide, Phys. Rev. B 40, 4224–4227.

    Article  CAS  Google Scholar 

  15. Devine, R.A.B. and Arndt, J. (1989) Correlation defect creation and dose-dependent radiation sensitivity in amorphous SiO2, Phys. Rev. B39, 5132–5138

    Google Scholar 

  16. Devine, R.A.B. (1994) The structure of SiO2, its defects and radiation hardness, IEEE Trans. Nucl. Sci. 41, 452–460.

    Article  CAS  Google Scholar 

  17. Conley, J.F. and Lenahan, P.M. (1996) A rewiew of electron spin resonance spectroscopy of defects in thin film SiO2 on Si, in H.Z. Massoud et al. (eds.), The Physics and Chemistry of SiO 2 and the Si-SiO 2 interface — 3, 96-1, ECS, NJ, pp. 214–249.

    Google Scholar 

  18. Weeks, R.A. (1963) Paramagnetic spectra of E2’-centers in crystalline quartz, Phys. Rev. 130, 570–576.

    Article  CAS  Google Scholar 

  19. Griscom, D.L. (1978) Defects and impurities in α-quartz and fused silica, in S.T. Pantelides (ed.), The Physics of SiO2 and its interfaces, Pergamon Press, NY, 232–252.

    Google Scholar 

  20. Conley, J.F., Lenahan, P.M. and Roitman, P. (1991) Electron spin resonance study of E’-trapping centers in SIMOX buried oxides, IEEE Trans. Nucl. Sci. 38, 1247–1252.

    Article  CAS  Google Scholar 

  21. Stesmans, A., Revesz, A.G. and Hughes, H.L. (1991) Electron spin resonance of defects in silicon-on-insulator structures formed by oxygen implantation: influence of γ-irradiation, J. Appl. Phys. 69, 175–181.

    Article  CAS  Google Scholar 

  22. Weeks, R.A. and Sonder, E. (1963) The relation between the magnetic susceptibility, electron spin resonance and the optical absorption of the E’-center infused silica, in W. Low (ed.), Paramagnetic Resonance II, Academic Press, NY, pp. 869–875.

    Google Scholar 

  23. Vanheusden, K. and Stesmans, A. (1993) Characterization and depth profiling of E’ defects in buried SiO2, J. Appl. Phys. 74, 275–283.

    Article  CAS  Google Scholar 

  24. Vanheusden, K. and Stesmans, A. (1994) Similarities between separation by implanted oxygen and bonded and etchback silicon-on-insulator material as revealed by electron spin resonance, in S. Cristoloveanu et al. (eds.), Silicon-on-Insulator Technology and Devices 94-11 ECS, NJ, 197–202.

    Google Scholar 

  25. Chavez J.R., Kama S.P., Vanheusden, K., Brothers, C.P., Pugh R.D., Siugaraya, B.K., Warren W.L. and Devine, R.A.B. (1997) Microscopic structure of the Eδ’center in amorphous SiO2: A first principles quantum mechanical investigation, IEEE Trans. Nucl. Sci. 44, 1799–1803.

    Article  CAS  Google Scholar 

  26. Conley, J.F., Lenahan, P.M. and Roitman, P. (1992) Evidence for a deep electron trap and charge compensation in separation by implanted oxygen oxides, IEEE Trans. Nucl. Sci. 39, 2114–2120.

    Article  CAS  Google Scholar 

  27. Strzalkowski, I., Marczewski, M. and Kowalski, M. (1986) Thermal depopulation studies of electron traps in ion implanted silica layers, Appl. Phys. A 40, 123–127.

    Article  Google Scholar 

  28. Fowler, W.B. and Rudra, J.K. (1987) Oxygen vacancy and the E’ center in crystalline SiO2, Phys. Rev. B 35, 8223–8230.

    Article  Google Scholar 

  29. Afanas’ev. V.V., Revesz, A.G., Brown, G.A. and Hughes, H.L. (1994) Deep and shallow electron trapping in the buried oxide layer of SIMOX structure, J. Electrochem. Soc. 141, 2801–2804.

    Article  CAS  Google Scholar 

  30. VLSI Technology (1983) ed by S.M.Sze, McGraw-Hill Book Comp, NY.

    Google Scholar 

  31. Revesz, A.G. (1979) The role of hydrogen in SiO2 films on solicon, J.Electrochem.Soc. 126, 121–130.

    Google Scholar 

  32. Sugano, T. (1989) Carrier trapping in silicon MOS devices, Acta Polytechn. Semicond. Electr. Eng. Sci. 64, 220–241.

    Google Scholar 

  33. Myers, S.M, Brown, G.A, Revesz, A.G. and Hughes, H.L. (1993) Deuterium interactions with ion-implanted SiO2 layers in silicon, J. Appl. Phys. 73, 2196–2206.

    Article  CAS  Google Scholar 

  34. Vanheusden, K., Stesmans, A. and Afanas’ev, V.V. (1995) Combined electron spin resonance and capacitance-voltage analysis of hydrogen-annealing induced positive charge in buried SiO2, J. Appl. Phys. 77, 2419–2424.

    Article  CAS  Google Scholar 

  35. Warren, W.L, Vanheusden, K, Schwank, J.R, Fleetwood, D.H., Winokur, P.S. and Devine, R.A.B. (1996) Mechanism for anneal-induced interfacial charging in SiO2 thin films on Si, Appl. Phys. Lett. 68, 2993–2995.

    Article  CAS  Google Scholar 

  36. Vanheusden, K., Schwank, J.R, Warren, W.L, Fleetwood, D.M. and Devine, R.A.B. (1997) Radiation-induced H+ trapping in buried SiO2, Microelectr. Eng. 36, 241–244.

    Article  CAS  Google Scholar 

  37. Warren, W.L., Fleetwood, D.M., Schwank, J.R, Vanheusden, K., Devine, R.A.B., Archer, L.B. and Wallace, R.M. (1997) Protonic nonvolatile field effect transistor memories in Si/SiO2/Si structures, IEEE Trans. Nucl. Sci. 44, 1789–1798.

    Article  CAS  Google Scholar 

  38. Conley, J.F. and Lenahan, P.M. (1992) Room temperature reactions involving silicon changing bond centers and molecular hydrogen in amorphous SiO2 thin films on silicon, IEEE Trans. Nucl. Sci. 39, 2186–2191.

    Article  CAS  Google Scholar 

  39. Snow, E.H., Grove, A.S, Deal, B.E. and Suh, C.T. (1965) Ion transport phenomena in insulating films, J. Appl. Phys. 36, 1664–1673.

    Article  CAS  Google Scholar 

  40. Foukes, F.M. and Witherell, F.E. (1974) Sodium mobility in irradiated SiO2, IEEE Trans. Nucl. Sci. 21, 67–72.

    Google Scholar 

  41. Hofstein, S.R. (1967) Proton and sodium transport in SiO2 films, IEEE Trans. On Electr. Dev. ED-14, 749–759.

    Article  Google Scholar 

  42. Stagg, J.P. (1977) Drift mobility of Na+ and K+ ions in SiO2 films, Appl. Phys. Lett. 31, 532–533.

    Article  CAS  Google Scholar 

  43. Dimitrakis, P., Papaioannou, G.J. and Cristoloveanu, S. (1996) Electrical properties of buried oxide-silicon interface, J.Appl.Phys. 80, 1605–1610.

    Article  CAS  Google Scholar 

  44. Nazarov, A.N., Mikhailov, S.N., Lysenko, V.S., Givargizov, E.I. and Limanov, A.B. (1992) The study of transportation and accumulation charge processes in the buried SiO2 layers in SOI structures fabricated by zone melting recrystallization technique, Microelectronica 21, 3–13 (in Russian).

    CAS  Google Scholar 

  45. Vertoprahov, V.N., Kuchumov, B.M. and Salman, E.G. (1981) Structure and properties of Si-SiO2-M systems, Nauka, Novosibirsk (in Russian).

    Google Scholar 

  46. Van Turnhaut, J. (1980) Thermally stimulated discharge of electrets, in G.M. Sessler (ed.), Electrets, Springer-Verlag, Berlin-New York, pp. 105–270.

    Google Scholar 

  47. Ioannou-Sougleridis, V., Papaioannou, G.J., Dimitrakis, P. and Cristoloveanu, S. (1993) Characterization of the buried oxide in SOI structures by a rate window method, J. Appl. Phys. 74, 3298–3302.

    Article  CAS  Google Scholar 

  48. Nazarov, A.N., Lysenko V.S., Gusev, V.A. and Kilchitkaya, V.I. (1994) C-V and thermally activated investigation of ZMR SOI meza structures, in S. Cristoloveanu (ed.), Silicon-on-Insulator Technology and Devices 94-11, ECS Publishers, NJ, pp. 236–244.

    Google Scholar 

  49. Nazarov, A.N., Barchuk, I.P. and Kilchitskaya, V.I. (1996) Thermal polarization and depolarization processes in BOX of SOI SIMOX structure, in P.L.F. Hemment et al. (eds.), Silicon-on-Insulator Technology and Devices 96-3, ECS Publisher, NJ, pp. 302–308.

    Google Scholar 

  50. Gobreht, H. and Hofmann, D. (1966) Spectroscopy of trap by fractional glow technique, J. Phys. Chem. Sol. 27, 509–522.

    Article  Google Scholar 

  51. Nazarov, A.N., Colinge, J.P. and Barchuk, I.P. (1997) Research of high-temperature instability processes in buried dielectric of full depleted SOI MOSFETs, Microelectr. Eng. 36, 363–366.

    Article  CAS  Google Scholar 

  52. Nazarov, A.N., Barchuk, I.P. and Colinge, J.P. (1998) The nature of hightemperature instability in fully depleted SOI IM n-MOSFET, Proceeding of 4 th International High Temperature Electronic Conference (HITEC), Albuquerque, NM, pp. 226–229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nazarov, A.N., Barchuk, I.P., Kilchytska, V.I. (2000). Electrical Instabilities in Silicon-on-Insulator Structures and Devices During Voltage and Temperature Stressing. In: Hemment, P.L.F., Lysenko, V.S., Nazarov, A.N. (eds) Perspectives, Science and Technologies for Novel Silicon on Insulator Devices. NATO Science Series, vol 73. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4261-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4261-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6117-6

  • Online ISBN: 978-94-011-4261-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics