Skip to main content

Low-Temperature Processing of Crystalline Si Films on Glass for Electronic Applications

  • Chapter
Perspectives, Science and Technologies for Novel Silicon on Insulator Devices

Part of the book series: NATO Science Series ((ASHT,volume 73))

Abstract

The present paper gives an overview of the material properties and the technology of the low-temperature preparation and modification of crystalline Si films on glass. Electronic properties of Si films strongly depend on the film structure, which thus determines possible areas of devices applications. In detail, we discuss i) high-throughput pulsed laser crystallization using a solid state laser that enables the formation of Si films with elongated grains having a length of several ten μm, ii) low-temperature epitaxy at temperatures around 600°C with a rate up to 0.5 μm/min using ion assisted deposition, and iii) the formation of quasi-monocrystalline Si films via crystallization of porous Si. This innovative thin film transfer technology permits reuse of Si wafers and produces films with a thickness-dependent hole mobility of up to 78 cm2/Vs and effective internal light trapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergmann, R. B., Köhler, J., Dassow, R., Zaczek, C., and Werner, J. H. (1998) Nucleation and Growth of Crystalline Silicon Films on Glass for Solar Cells, Physica Status Solidi (a) 166, 587.

    Article  CAS  Google Scholar 

  2. Boyce, J. B., Mei, P., Fulks, R. T., and Ho, J. (1998) Laser Processing of Polysilicon Thin-Film-Transistors: Grain Growth and Device Fabrication, Physica Status Solidi (a) 166, 729.

    Article  CAS  Google Scholar 

  3. Street, R. A. (1998) Large Area Electronics, Applications and Requirements, Physica Status Solidi (a) 166, 695.

    Article  CAS  Google Scholar 

  4. Schubert, M. B. (1999) Low Temperature Silicon Deposition for Large Area Sensors and Solar Cells, Thin Solid Films 337, xxx, in press.

    Article  Google Scholar 

  5. Bruel, M. (1996) Application of Hydrogen Ion Beams to Silicon On Insulator Material Technology, Nuclear Instruments and Methods in Physics Research B 108, 313.

    Article  CAS  Google Scholar 

  6. Fritzsche, H. (1997) Search for explaining the Staebler-Wronski effect, Mat. Res. Soc. Symp. Proc. 467, 19.

    Article  CAS  Google Scholar 

  7. Carius, R., Finger, F., Backhausen, U., Luysberg, M., Hapke, P., Houben, L., Otte, M., and Overhof H. (1997) Electronic properties of microcrystalline Silicon, Mat. Res. Soc. Symp. Proc. 467, 283.

    Article  CAS  Google Scholar 

  8. Pfaender, H. G. (1997) Schott Guide to Glass, Chapman & Hall, London.

    Google Scholar 

  9. Kamins, T. (1988) Polycrystalline Silicon for Integrated Circuit Applications, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  10. Zimmer, J., Stiebig, H., Hapke, P., and Wagner, H. (1998) Study of the electronic transport in pin solar cells based on microcrsytalline silicon, in: Proc. 2 nd World Conf. on Photovoltaic Solar Energy Conversion, in press.

    Google Scholar 

  11. Brüggemann, R. (1998) Improved steady-state photocarrier grating in nanocrystalline thin films after surface-roughness reduction by mechanical polishing, Appl. Phys. Lett. 73, 499.

    Article  Google Scholar 

  12. Torres, P., Meier, J., Goetz, M., Beck, N., Kroll, U., Keppner, H., and Shah, A. (1997) Microcrystalline silicon solar cells at higher depsoition rates by the VHF-GD, Mat. Res. Soc. Symp. Proc. 452, 883.

    Article  CAS  Google Scholar 

  13. Bergmann, R. B., and Krinke, J. (1997) Large grained polycrystalline silicon films by solid phase crystallization of phosphorus doped amorphous silicon, J. Crystal Growth 177, 191.

    Article  CAS  Google Scholar 

  14. Fehlner, F. P. (1997) Thin films on glass for liquid crystal displays, J. Non-Crystalline Solids 218, 360.

    Article  CAS  Google Scholar 

  15. Moffatt-Fairbanks D. M., Tennent, D. L. (1997) Substrate issues for advanced display technologies, Mat. Res. Soc. Symp. Proc. 471, 9.

    Article  CAS  Google Scholar 

  16. Schott Corp. (1997), Product information on glass, BOROFLOAT nos. 33, AF37 and 40

    Google Scholar 

  17. Plieninger, R., Wanka, H. N., Kiihnle, J., and Werner, J. H. (1997) Efficient defect passivation by hotwire hydrogénation, Appl. Phys. Lett. 71, 2169.

    Article  CAS  Google Scholar 

  18. Im, J. S., Crowder, M. A., Sposili, R. S., Leonard, J. P., Kim, H. J., Yoon, J. H., Gupta, V.V., Jin Song, H., and Cho H. S. (1998) Controlled Super-Lateral Growth of Si Films for Microstructural Manipulation and Optimization, Physica Status Solidi (a) 166, 603.

    Article  CAS  Google Scholar 

  19. Brendel, R., Bergmann, R. B., Fischer, B., Krinke, J., Plieninger, R., Rau, U., Reiß, J., Strunk, H. P., Wanka, H., and Werner J. H. (1997) Transport analysis for polycrystalline silicon solar cells on glass substrates, in: Proc. 26 th IEEE Photovoltaic Specialists Conf., IEEE, Picataway, p. 635.

    Google Scholar 

  20. Bergmann, R. B., Shi F. G., and Krinke, J. (1998) Non-coarsening origin of log-normal size distributions during crystallization of amorphous films, Physical Review Letters 80, 1011.

    Article  CAS  Google Scholar 

  21. Robinson, R. D., Miaoulis, I. N. (1994) Thermal parameters affecting low temperature zone-melting recrystallization of films, J. Appl. Phys. 75, 1771.

    Article  CAS  Google Scholar 

  22. Hebling, C., Glunz, S. W., Schuhmacher, J. O., and Knobloch J. (1997) High-efficiency (19.2%) silicon thin-film solar cells with interdigitated emitter and base front-contacts, in: Proc. 14 th Europ. Photovoltaic Solar Energy Conf., H. A. Ossenbrink, P. Helm, and H. Ehmann (eds.), Stephens & Assoc., Bedford, p. 2318.

    Google Scholar 

  23. Bergmann, R. B., Hebling, C., Ullmann, I., Bischoff, E., and J. H. Werner, (1997) Zone melt recrystallization of silicon films on glass, in: Proc. 14 th Europ. Photovoltaic Solar Energy Conf., H. A. Ossenbrink, P. Helm, and H. Ehmann (eds.), Stephens & Assoc., Bedford, p. 1464.

    Google Scholar 

  24. Bergmann, R. B., Darrant, J. G., Hyde, A. R., Werner, J. H. (1997) Crystalline Silicon films on a novel high temperature glass for applications in microelectronics and photovoltaics, J. Non-Crystalline Solids 218, 388.

    Article  CAS  Google Scholar 

  25. Sato, N., Sakaguchi, K., Yamagata, K., Fujiyama, Y., and Yonehara, T. (1995) Epitaxial growth on porous Si for a new bond and etchback silicon-on-insulator, J. Electrochem. Soc. 142, 3116.

    Article  CAS  Google Scholar 

  26. Tayanaka, H., Yamauchi K., and Matsushita, T. (1998) Thin-film crystalline silicon solar cells obtained by separation of a porous silicon sacrificial layer, in: Proc. 2 nd World Conference on Photovoltaic Solar Energy Conversion, in press.

    Google Scholar 

  27. Brendel, R., Artmann, H., Oelting, S., Frey, W., Werner, J. H., and Queisser, J. H. (1998) Monocrystalline Si waffles for thin solar cells fabricated by the novel perforated-silicon process, Appl. Phys. A. 67, 151.

    Article  CAS  Google Scholar 

  28. Kuriyama, H., Nohda, T., Ishida, S., Kuwahara, T., Noguchi, S., Kiyama, S., Tsuda, S., Nakano, S. (1993) Lateral grain growth of poly-Si films with a specific orientation by an excimer laser annealing method, Jpn. J. Appl. Phys. 32, 6190.

    Article  CAS  Google Scholar 

  29. Im, J. S., and Sposili, R. S. (1996) Crystalline Si films for integrated active-matrix liquid crystal displays, Mater. Res. Bull. 21, 39.

    CAS  Google Scholar 

  30. Im, J. S., Spossli, R. S. and Crowder, R. S. (1997) Single-crystal Si films for thin film transistor devices, Appl. Phys. Lett. 70, 3434.

    Article  CAS  Google Scholar 

  31. Plais, F., Legagneux, P., Reita, C., Huet, O., Petinot, F., Pribat, D., Godard, B., Stehle M. and Fogarassy, E. (1995) Low temperature polysilicon TFT’s: A comparison of solid and laser crystallization, Microelect. Eng. 28, 443.

    Article  CAS  Google Scholar 

  32. Köhler, J. R., Dassow, R., Bergmann, R. B., Krinke, J., Strunk H. P., and Werner, J. H. (1998) Large grained polycrystalline silicon on glass by copper vapor laser annealing, Thin Solid Films xxx, in press.

    Google Scholar 

  33. Dassow, R., Köhler, J. R., Grauvogl, M., Bergmann, R. B., and Werner, J. H. (1998) Laser-crystallized polycrystalline silicon on glass for photovoltaic applications, in: Polycrystalline Semiconductors V, Werner, J. H., Strunk, H. P., Schock, H. W., eds., in Series Solid State Phenomana, Scitech Publ., Uettikon am See, Switzerland, 1999, to be published.

    Google Scholar 

  34. Secco d’Aragona, F. (1972) Dislocation etch for (100) planes in silicon, J. Electrochem. Soc. 119, 948.

    Article  CAS  Google Scholar 

  35. Oelting, S., Martini, D., Köppen, H., Bonnet, D. (1995) Ion assisted deposition of crystalline thin film silicon solar cells, in: Proc. 13 th European Photovoltaic Solar Energy Conf. (H. S. Stephens, Bedford, 1995), p. 1681.

    Google Scholar 

  36. Bergmann, R. B., Zaczek, C., Jensen, N., Oelting, S., Werner, J. H. (1998) Low-temperature Si epitaxy with high deposition rate using ion-assisted deposition, Appl. Phys. Lett. 72, 2996.

    Article  CAS  Google Scholar 

  37. Rabalais, J. W., Al-Bayati, A. H., Boyd, K. J., Morton, S., Kulik, J., Zhang, Z., and Chu, W. K. (1996) Ion-energy effects in silicon ion-beam epitaxy, Phys. Rev. B 53, 10781.

    Article  CAS  Google Scholar 

  38. Kühnle, J., Bergmann, R. B., Oelting, S., Krinke, J., Strunk, H. P., and Werner, J. H. (1997) Polycrystalline silicon films on glass for solar cells by ion-assisted deposition, in Proc. 14 th Europ. Photovoltaic Solar Energy Conf., Stephens & Assoc., Bedford, p. 1022.

    Google Scholar 

  39. Klaassen, D. B. M. (1992) A unified mobility model for device simulation I. Model equations and concentration dependence, Solid-State Electronics 35, 953.

    Article  CAS  Google Scholar 

  40. Arch, J. K., Werner, J. H., and Bauser, E. (1993) Hall effect analysis of liquid phase epitaxy silicon for thin film solar cells, Solar Energy Materials and Solar Cells 29, 387.

    Article  CAS  Google Scholar 

  41. Parry, C. P., Kubiak, R. A., Newstead, S. M., Whall, T. E., and Parker, E. H. C. (1991) Temperature dependence of incorporation processes during heavy boron doping in silicon molecular beam epitaxy, J. Appl. Phys. 71, 118.

    Article  Google Scholar 

  42. Blakers, A. (1990) High efficiency crystalline silicon solar cells, in: Festkörperprobleme /Advances in Solid State Physics Vol. 30, Vieweg, Braunschweig, p. 403.

    Google Scholar 

  43. Hausner, R. M., Jensen, N., Bergmann, R. B., Rau, U., and Werner, J. H. (1998) Heterojunctions for polycrystalline silicon solar cells, to be published, see [33].

    Google Scholar 

  44. Brendel, R., Hirsch, M., Stemmer, M., Rau, U., and Werner, J. H. (1995) Internal quantum efficiency of thin epitaxial silicon solar cells, Appl. Phys. Lett. 66, 1261.

    Article  CAS  Google Scholar 

  45. Watanabe, H. (1993) Overview of cast multicrystalline silicon solar cells, MRS Bulletin 18, 29.

    CAS  Google Scholar 

  46. Lang, W. (1996) Silicon microstructuring technology, Mater. Sci. Engin. R17, 55.

    Google Scholar 

  47. Rinke, T. J., Bergmann, R. B., Brüggemann, R., and Werner, J. H. (1998) Ultrathin quasi-monocrystalline silicon films for electronic devices, to be published, see [33].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bergmann, R.B., Rinke, T.J., Oberbeck, L., Dassow, R. (2000). Low-Temperature Processing of Crystalline Si Films on Glass for Electronic Applications. In: Hemment, P.L.F., Lysenko, V.S., Nazarov, A.N. (eds) Perspectives, Science and Technologies for Novel Silicon on Insulator Devices. NATO Science Series, vol 73. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4261-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4261-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6117-6

  • Online ISBN: 978-94-011-4261-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics