Skip to main content

Combustion Mechanisms — Solid Phase

Structural Changes and Heterogeneous Reactions

  • Chapter
Pollutants from Combustion

Part of the book series: NATO Science Series ((ASIC,volume 547))

Abstract

In combustion of solid and liquid, charring fuels, homogeneous and heterogeneous reactions and structural changes describing phenomena in fuel/char particle and in adjacent surroundings are generally needed for complete and realistic modeling of burning.

Rank of coal (solid or liquid fuel), heating rate, size of particles and reaction conditions (temperature, gas concentrations, pressure) determine behavior, structural changes and reactivity of coal (fuel) particles during drying, devolatilization, gas phase oxidation of volatiles and char combustion. At relatively lower temperatures of combustion (< 1000 °C) the catalytic effects of ash, CaO and other solids on combustion rate of volatiles and transformation of N-precursors to nitrogen oxides are usually significant. The rate of burning or gasification of a solid fuel depends mostly on volatile or fixed carbon content. Development of pore structure, ash effects and reactivity of a char play an important role in combustion, release and reduction of nitrogen oxide (NO+N2O), SO2 and heavy metal emissions.

In this review, mechanism, contributions and relative importance of heterogeneous catalyzed and non-catalyzed reactions of gases and radicals in devolatilization, volatile and char combustion are analyzed. Further, influence of fuels, combustion conditions and technology on measured burning (reaction) rates, temperature of burning particles and emissions has been assessed, based on experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gorbaty M.L. (1994) Prominent frontiers of coal science: past, present and future, Fuel, 73, 1819.

    Article  CAS  Google Scholar 

  2. Wornat M.J., Porter B.G. and Yang Y.C. (1994) Single droplet combustion of biomass pyrolysis oil, Energy & Fuel, 8, 1131–1142.

    Article  CAS  Google Scholar 

  3. Di Blasi C. (1993) Modelling and simulation of combustion processes of charring and non-charring solid fuels, Prog. Energy Combust., 19, 71.

    Article  Google Scholar 

  4. Kurkela E. and Stalberg P. (1992) Air gasification of peat, wood and brown coal in a pressurized fluidized bed reactor. I. Carbon conversion, gas yields and tar formation, Fuel Processing Technol., 31, 1.

    Article  CAS  Google Scholar 

  5. Griffin T.P., Howard J.B. and Peters W. A. (1993) An experimental and modelling study of heating rate and particle size effects in bituminous coal pyrolysis, Energy & Fuel, 7, 297.

    Article  CAS  Google Scholar 

  6. Varey J.E., Hindmarsh Ch.J. and Thomas K.M. (1996) The detection of reactive intermediates in the combustion and pyrolysis of coals, chars and macerals, Fuel, 75, 164.

    Article  CAS  Google Scholar 

  7. Seebauer V., Petek J. aand Staudinger G. (1997) Effect of particle size, heating rate and pressure on measurement of pyrolysis kinetics by thermogravimetric analysis, Fuel 76, 1277.

    Article  CAS  Google Scholar 

  8. Smoot L.D. (1997) A decade of combustion research, Prog. Energy Combust., 23, 203.

    Article  CAS  Google Scholar 

  9. Solomon P. R., Serio M. A. and Suuberg E. M. (1992) Coal pyrolysis: experiments, kinetic rates and mechanisms, Prog. Energy Combust. Sci., 18, 133.

    Article  CAS  Google Scholar 

  10. Remiarova B., Žajdlik R., Markoš J. and Jelemenský L. (1998) Study of pore structure characteristics of a coal particle ( in Slovak). The 25th-Conference of SSCHI, Jasná, 25.-29. 5. 1998, Slovakia.

    Google Scholar 

  11. Cai Y.H., Guel A.J., Chatzakis I.N., Lim J.Y., Dugwell D.R. and Kandiyoti R. (1996) Combustion reactivity and morphological change in coal chars: effect of pyrolysis temperature, heating rate and pressure, Fuel 75, 15.

    Article  CAS  Google Scholar 

  12. Gibbins J.R. and Kandiyoti R. (1989) The effect of variation in time-temperature history on product distribution from coal pyrolysis, Fuel 68, 895.

    Article  CAS  Google Scholar 

  13. Saastomoinen J.K., Aho M.J. and Linna V.L. (1993) Simultaneous pyrolysis and char combustion, Fuel, 72, 599.

    Article  Google Scholar 

  14. Tomeczek J. and Kowol J. (1991) Temperature field within a devolatilizing coal particle, Canad. J. of Chem. Engineering, 69, 286.

    Article  CAS  Google Scholar 

  15. Winter F., Prah M. E. and Hofbauer H. (1997) Temperatures in fuel particle burning in a fluidized bed: the effect of drying, devolatilization and char combustion, Combustion and Flame, 108, 302.

    Article  CAS  Google Scholar 

  16. Oudraogo A., Mulligan J. C. and Cleland J. G. (1998) A quasi-steady shrinking core analysis of wood combustion, Combustion and Flame, 114, 1.

    Article  Google Scholar 

  17. Hastaoglu M. A., Hassam M. S. (1995) Application of a general gas-solid reaction model to flash pyrolysis of wood in a circulating fluidized bed, Fuel, 74, 697.

    Article  CAS  Google Scholar 

  18. Takeshi M. and Okazaki K. (1988) Coal Combustion ( ed. J. Feng), Hemisphere Publishing Corporation, New York, (pp. 139–146).

    Google Scholar 

  19. Baulch D. L., Cobos C. J. and al. (1992) Evaluated kinetic data for combustion modeling, J. Phys. Chem. Ref. Data, 21, 411.

    Article  CAS  Google Scholar 

  20. Blackham A.U., Smoot L.D. and Yousefi P. (1994) Fuel, 73, 602.

    Article  CAS  Google Scholar 

  21. Bateman K.J., Germane G.J., Smoot L.D., Blackham A.U. and Eatough C.N. (1995) Effect of pressure on oxidation rate of millimetre-sized char particles, Fuel, 74, 1466.

    Article  CAS  Google Scholar 

  22. Lu Y. (1996) Laboratory studies on devolatilization and char oxidation under PFBC conditions-1. volatile release and char reactivity, Energy & Fuels, 10, 348.

    Article  CAS  Google Scholar 

  23. Marban M., Pis J.J and Fuertes A.B. (1995) Characterizing fuels for atmospheric fluidized bed combustion, Combustion and Flame, 103, 41.

    Article  CAS  Google Scholar 

  24. Adánez J., Abádanes J.C. and de Diego L.F. (1994), Determination of coal combustion reactivities by burnout time measurements in a batch fluidized bed, Fuel, 73, 287.

    Article  Google Scholar 

  25. Du X., Gopalakrishnan Ch. and Annamalai K. (1995) Ignition and combustion of coal particle streams, Fuel, 74, 487.

    Article  CAS  Google Scholar 

  26. Annamalai K., Ryan W.and Dhanapalan S. (1994) Interactive processes in gasification and combustion-part III: coal/char particle arrays, streams and clouds, Prog. Energy Combust. Sci., 20, 487.

    Article  CAS  Google Scholar 

  27. Fu W. B. and Zhang B. L. (1995) Experimental determination of the equivalent mass diffusivity for a porous coal ash particles, Combustion and Flame, 101, 371.

    Article  CAS  Google Scholar 

  28. Ha M. Y. and Choi B. R. (1994) A numerical study on the combustion of a single carbon particle entrained in a steady state flow, Combustion and Flame, 97, 1.

    Article  CAS  Google Scholar 

  29. Lee J. C., Vetter R. A. and Dryer F. L. (1995) Transient numerical modelling of carbon particle ignition and oxidation, Combustion and Flame, 101, 387.

    Article  CAS  Google Scholar 

  30. Sriramulu S., Sane S., Agarwal P.and Mathews T. (1996) Mathematical modeling of fluidized bed combustion-1. combustion of carbon in bubbling beds, Fuel, 75, 1351.

    Google Scholar 

  31. Hurt R., Sun J. K. and Lunden M. (1998) A kinetic model of carbon burnout in pulverized coal combustion, Combustion and Flame, 113, 181.

    Article  CAS  Google Scholar 

  32. Back M. H. (1997) The kinetics of the reaction of carbon with oxygen, Can. J. Chem., 75, 249.

    Article  CAS  Google Scholar 

  33. Neeft J. P. A., Nijhuis T. X., Smakman E., Makee M. and Moulijn J. A. (1997) Kinetics of the oxidation of diesel soot, Fuel, 76, 1129.

    Article  CAS  Google Scholar 

  34. Hüttinger K.J. and Nettermann C. (1994) Correlations between coal reactivity and inorganic matter content for pressure gasification with steam and carbon dioxide, Fuel, 73, 1682.

    Article  Google Scholar 

  35. Hill M., Fott P. (1993) Kinetics of gasification of Czech brown coals, Fuel, 72, 525.

    Article  CAS  Google Scholar 

  36. Chelliah H. K., Makino A., Kato I., Araki N. and Law C. K. (1996) Modeling of graphite oxidation in a stagnation-point flow field using detailed homogeneous and semiglobal heterogeneous mechanism with comparison to experiments, Combustion and Flame, 104, 469.

    Article  CAS  Google Scholar 

  37. Chelliah H. K. (1996) The influence of heterogeneous kinetics and thermal radiation on the oxidation of graphite particles, Combustion and Flame, 104, 81.

    Article  CAS  Google Scholar 

  38. Goel S. K., Neer J. M. and Sarofim A. F. (1996) An emissions model for a bubbling FBC using chemical kinetics: significance of destruction reactions, Journal of the Inst. of Energy, 69, 201.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Svoboda, K., Hartman, M., Cermák, J. (2000). Combustion Mechanisms — Solid Phase. In: Vovelle, C. (eds) Pollutants from Combustion. NATO Science Series, vol 547. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4249-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4249-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6135-0

  • Online ISBN: 978-94-011-4249-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics