Skip to main content

Quantum Coherence and Decoherence by Spontaneous Emission in a Quantum Optical Realization of a Driven Pendulum

  • Chapter
Instabilities and Nonequilibrium Structures VI

Part of the book series: Nonlinear Phenomena and Complex Systems ((NOPH,volume 5))

  • 245 Accesses

Abstract

A quantum version of the periodically driven pendulum can be realized by a system of laser-cooled two-level atoms subject to an off-resonance standing wave laser field periodically modulated in time. In the fully chaotic state the classical angular momentum of the driven pendulum diffuses, like in a kicked rotor, via a random walk, while coherence effects give rise to dynamical localization of the quantized angular momentum. For the quantum optical realization this implies that classically, in the fully chaotic state, the momentum transferred to the atoms from the periodically modulated laser field grows diffusively in time, limited only by the size of the chaotic domain, while quantum mechanically the momentum transfer is limited by dynamical localization, i.e. a quantum coherence effect analogous to Anderson localization, but in momentum space rather than in real space and without any randomness in the Hamiltonian. A classical to quantum cross-over of the observed momentum transfer as a function of the modulation strength or frequency is therefore predicted to occur as soon as the localization length becomes smaller than the width in momentum of the classically chaotic domain. The experiment has recently been carried out in Mark Raizen’s group in Austin. Even though the experiment still operates in a domain where sizeable regular islands are embedded in the chaotic domain there is reasonable agreement with the theory, and dynamical localization can be observed for some parameter values of the modulation strength. We also discuss the influence of spontaneous emisssion on the quantum coherence effects influencing the atomic momentum transfer. Cases where the momentum transfer is limited classically by regular islands, and quantum mechanically by dynamical localization are affected in very different ways. For dynamically localized states we predict a quantum diffusion of the momentum transfer due to decoherence by spontaneous emission, which is fundamentally different from and much weaker than the classical diffusion due to chaos for experimentally relevant parameter values. Our numerical and analytical results indicate nevertheless that quantum diffusion due to decoherence by spontaneous emission may actually be visible in the existing experimental data and some simple tests to check this claim are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.J. Lichtenberg and M.A. Lieberman, ‘Regular and Stochastic Motion’, (Springer, Berlin 1983); R.S. MacKay and J.D. Meiss (eds.), ‘Hamitonian Dynamical Systems’ (Hilger, Bristol 1987)

    MATH  Google Scholar 

  2. G. Casati and B.V. Chirikov (eds.), ‘Quantum Chaos: Between Order and Disorder’, (Cambridge Univ. Press, Cambridge 1995)

    Google Scholar 

  3. S. Fishman, in ‘Quantum Chaos’, G. Casati, I. Guarneri and U. Smilansky (eds.), (North Holland, Amsterdam 1993); R.E. Prange, in ‘Chaos and Quantum Chaos’, W.D. Heiss (ed.), (Springer, Berlin 1992)

    Google Scholar 

  4. See e.g. B.V. Chirikov, in ‘Chaos and Quantum Chaos’, W.D. Heiss (ed.), (Springer, Berlin 1992) and references given there

    Google Scholar 

  5. D.L. Shepelyansky, Physica D28, 103 (1987)

    ADS  Google Scholar 

  6. S. Fishman, R.E. Prange and M. Griniasty, Phys. Rev. A39, 1628 (1989)

    ADS  Google Scholar 

  7. R. Graham, M. Schlautmann and P. Zoller, Phys. Rev. A45, R19 (1992)

    ADS  Google Scholar 

  8. M. Schlautmann and R. Graham, Phys. Rev. E52, 340 (1995)

    ADS  Google Scholar 

  9. R. Graham and S. Miyazaki, Phys. Rev. A53, 2683 (1996)

    ADS  Google Scholar 

  10. R. Graham, M. Schlautmann, and D. L. Shepelyansky, Phys. Rev. Lett. 67, 255 (1991)

    Article  ADS  Google Scholar 

  11. P.L. Gould et al, Phys. Rev. Lett. 56, 827 (1986); C. Salomon et al, Phys. Rev. Lett. 59, 1659 (1987): P.J. Martin et al, Phys. Rev. A36, 2495 (1987); P.J. Martin et al, Phys. Rev. Lett. 60, 515 (1988)

    Article  ADS  Google Scholar 

  12. F.L. Moore, J.C. Robinson, C. Bharucha, P.E. Williams, and M.G. Raizen, Phys. Rev. Lett. 73, 2974 (1994)

    Article  ADS  Google Scholar 

  13. J.C. Robinson, C. Bharucha, F.L. Moore, R. Jahnke, G.A. Georgakis, Q. Niu, and M.G. Raizen, Phys. Rev. Lett. 74, 3963 (1995)

    Article  ADS  Google Scholar 

  14. F.L. Moore, J.C. Robinson, C. Bharucha, B. Sundaram, and M.G. Raizen, Phys. Rev. Lett. 75, 4598 (1995)

    Article  ADS  Google Scholar 

  15. J.P. Bardroff, I. Bialynicki-Birula, D.S. Krähmer, G. Kurizki, E. Mayr, P. Stifter, and W.P. Schleich, Phys. Rev. Lett. 74, 3959 (1995)

    Article  ADS  Google Scholar 

  16. P. Goetsch and R. Graham, Phys. Rev. A 54, 5345 (1996)

    Article  ADS  Google Scholar 

  17. K. Mølmer, Y. Castin and J. Dalibard, J. Opt. Soc. Am. B10, 524 (1993); R. Dum, P. Zoller, and H. Ritsch, Phys. Rev. A45, 4879 (1992)

    ADS  Google Scholar 

  18. P. Goetsch and R. Graham, Phys. Rev. A50, 5242 (1994)

    ADS  Google Scholar 

  19. H.M. Wiseman and G.J. Milburn, Phys. Rev. A47, 1652 (1993); S. Dyrting and G.J. Milburn, Phys. Rev. A 51, 3136 (1995)

    ADS  Google Scholar 

  20. E. Ott, T. M. Antonsen, and J.D. Hanson, Phys. Rev. Lett. 53, 2187 (1984)

    Article  ADS  Google Scholar 

  21. T. Dittrich and R. Graham, Ann. Phys. (N.Y.) 200, 363 (1990); D. Cohen, Phys. Rev. A43, 639 (1991); 44, 2292 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  22. B.V. Chirikov and D.L. Shepelyansky, Sov. Phys. Tech. Phys. 27, 156 (1982)

    Google Scholar 

  23. M. Latka and B.J. West, Phys. Rev. Lett. 75, 4202 (1995)

    Article  ADS  Google Scholar 

  24. H. J. Carmichael, ‘An Open Systems Approach to Quantum Optics’, Lecture Notes in Physics m18 (Springer, Berlin 1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Graham, R. (2000). Quantum Coherence and Decoherence by Spontaneous Emission in a Quantum Optical Realization of a Driven Pendulum. In: Tirapegui, E., Martínez, J., Tiemann, R. (eds) Instabilities and Nonequilibrium Structures VI. Nonlinear Phenomena and Complex Systems, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4247-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4247-2_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5842-1

  • Online ISBN: 978-94-011-4247-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics