Skip to main content

Structure and Bonding of M(CO)3(H2O), M(CO)5(NH3), and M(CO)5(PH3) (M = Cr, Mo, W)1

  • Chapter

Part of the book series: NATO Science Series ((ASIC,volume 546))

Abstract

Quantum mechanical ab initio calculations using effective core potentials (ECPs) of the geometries and bond dissociation energies of transition-metal carbonyl complexes containing H2O, NH3 and PH3 are discussed≪ The geometries are optimized at the MP2 level of theory using valence basis sets of DZ+P quality. The bond dissociation energies are predicted at the CCSD(T) level of theory. The theoretical data are generally in good agreement with experimental values. The metal-ligand interactions are analyzed using the topological analyis of the charge distribution, the natural bond orbital (NBO) partitioning scheme and the charge decomposition analysis (CDA) based upon fragment molecular orbitals. H2o and NH3 are pure σ donors which are mainly bound through coulombic interactions. The metal-PH3 bonds have covalent contributions and show metal→3 π-backdonation, which is weaker than in CO, however.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Theoretical Studies of Organometallic Compounds. XXXVII. Part XXXVI: Frenking, G.; Kovacs, A. J. Am. Chem. Soc., submitted for publ.

    Google Scholar 

  2. Werner, H. Angew. Chem. 1990, 102, 1109; Angew. Chem. Int. Ed. Enal. 1990, 29, 1077.

    Article  CAS  Google Scholar 

  3. (a) Solomon, E.I,; Jones, P.M.; May, J.A. Chem. Rey. 1993, 93, 2623. (b) Sen, A. Acc. Chem. Rey. 1993, 26, 303.

    Article  CAS  Google Scholar 

  4. (a) Ehlers, A.W.; Frenking, G. J. Am. Chem. Soc. 1994, 116, 1514. (b) Ehlers, A.W.; Frenking, G. Organometallics 1995, 14, 423. (c) Szilagyi, R.K.; Frenking, G. Organometa11ics 1997, 16, 4807. (d) Lupinetti, A.J.; Fau, S.; Frenking, G.; Strauss, S.H. J. Phys. Chem. A 1997, 101, 9551. (e) Rosa, A.; Ehlers, A.W.; Baerends, E.J.; Snijders, J.G.; te Velde, G. J. Phys. Chem. 1996, 100, 5690. (f) Li, J.; Schreckenbach, G.; Ziegler, T. J. Am. Chem. Soc. 1995, 117. 486. (g) Li, J.; Schreckenbach, G.; Ziegler, T. J, Phys. Chem. 1994, 98, 4838. (h) Jonas, V.; Thiel, W. J. Chem. Phys. 1996, 105, 3636. (i) Jonas, V.; Thiel, W. J. Chem. Phys. 1995, 102, 8474. (j) Blomberg, M.R.A.; Siegbahn, P.E.M.; Lee, T.J.; Rendell, A.P.; Rice, J.E. J. Chem. Phys. 1991, 95, 5898. (k) Bérces, A. J. Phys. Chem. 1996, 100, 16538. (1) van Wüllen, Ch. J. chem. Phys. 1996, 105, 5485. (m) Radius, U.; Bickelhaupt, F.M.; Ehlers, A.E.; Goldberg, N.; Hoffmann, R. Inora. Chem. 1998, 37, 1080. (n) Büker, H.H.; Maitre, P.; Ohanessian, G. J. Phys. Chem. A 1997, 101. 3966.

    Article  CAS  Google Scholar 

  5. (a) Davidson, E.R.; Kunze, K.L.; Machado, F.B.C.; Chakravorty, S.J. Acc. Chem. Res. 1993, 26, 628. (b) Kunze, K.L.; Davidson, E.R. J. Phys. Chem. 1992, 96, 2129.

    Article  CAS  Google Scholar 

  6. Dapprich, S.; Frenking, G. J. Phys. Chem. 1995, 99, 9352.

    Article  CAS  Google Scholar 

  7. (a) Ehlers, A.W.; Dapprich, S.; Vyboishchikov, S.F.; Frenking, G. Organometallics 1996, 15, 105. (b) Vyboishchikov, S.F. Chem. Eur. J. 1998, 4, 1428. (c) Ehlers, A.W.; Frenking, G.; Baerends, E.J. Organometallica 1997, 16, 4896. (d) Fischer, R.A.; Schulte, N.M.; Weiss, J.; Zsolnai, L.; Jacobi, A.; Huttner, G.; Frenking, G.; Boehme, C.; Vyboishchikov, S. F. J. Am. Chem. Soc. 1998, 120, 1237.

    Article  CAS  Google Scholar 

  8. van Wüllen, C. J. Comput. Chem. 1997, 18, 1985.

    Article  Google Scholar 

  9. (a) Dewar, M.J.S.; Bull. Soc. Chim. Fr. 1951, 18, C79. (b) Chatt, J.; Duncanson, L.A. J. Chem. Soc. 1953, 2929.

    Google Scholar 

  10. Grobe, W. to be published.

    Google Scholar 

  11. Denise, B.; Massoud, A.; Parlier, A.; Rudler, H.; Daran, J.C.; Vaissermann, J.; Alvarez, C.; Patino, R.; Toscano, R.A. J. Organomet. Chem. 1990, 386, 51.

    Article  CAS  Google Scholar 

  12. Huttner, G.; Schelle, S. J. Oraanomet. Chem. 1973, 47, 383.

    Article  CAS  Google Scholar 

  13. (a) Higginson, B.R.; Lloyd, D.R.; Connor, J.A.; Hillier, I.H. J. Chem. Soc.. Faraday Trans. 1974, 70, 1418. (b) Davy, R.D.; Hall, M.B. Inorg. Chem. 1989, 28, 3524. (c) Cotton, F.A.; Darensbourg, D.J.; Fang, A.; Kolthammer, B.W.S.; Reed, D.; Thompson, J. Inora. Chem. 1981, 20, 4090. (d) Hansen, L.M.; Marynick, D.S. Inora. Chem. 1990, 29, 2482. (e) Kraatz, H.-B.; Jacobsen, H.; Ziegler, T.; Boorman, P.M. Organometal1ics 1993, 12, 76. (f) Lin, Z.; Hall, M.B. J. Am. Chem. Soc. 1992, 114, 2928.

    CAS  Google Scholar 

  14. Frenking, G.; Antes, I.; Boehme, M.; Dapprich, S.; Ehlers, A.W.; Jonas, V.; Neuhaus, A.; Otto, M.; Stegmann, R.; Veldkamp, A.; Vyboishchikov, S.F. ‘Reviews in Computational Chemistry’, Vol. 8, K.B. Lipkowitz and D.B. Boyd (Eds), VCH, New York, p. 63— 144 (1996).

    Chapter  Google Scholar 

  15. Reed, A.E,; Curtiss, L.A.; Weinhold, F. Chem. Rev. 1988, 88, 899.

    Article  CAS  Google Scholar 

  16. Bader, R.F.W. “Atoms in Molecules. A Quantum Theory”, Oxford Press, 1990.

    Google Scholar 

  17. (a) Møller, C.; Plesset, M.S. Phys. Rev. 1934, 46, 618. (b) Binkley, J.S.; Pople, J.A. Int. J. Quantum Chem. 1975, 9, 229.

    Article  Google Scholar 

  18. Hay P.J.; Wadt, W.R. J. Chem. Phys. 1985, 82. 299.

    CAS  Google Scholar 

  19. (a) Hehre, W.J.; Ditchfield, R.; Pople, J.A. J. Chem. Phys. 1972, 56, 2257. (b) Hariharan, P.C.; Pople, J.A. Theoret. Chim. Acta 1973, 28, 213. (c) Gordon, M.S. Chem. Phys. Lett. 1980, 76, 163.

    Article  CAS  Google Scholar 

  20. (a)Cizek, J. J. Chem. Phys. 1966, 45, 4256. (b) Cizek, J. Adv. Chem. Phys. 1966, 14, 35. (c) Pople, J.A.; Krishnan, R.; Schlegel, H.B.; Binkley, J.S. Int. J. Quantum Chem. 1978, 14, 545. (d) Bartlett, R.J.; Purvis, G.D. ibid. 1978, 14, 561. (e) Purvis, G.D.; Bartlett, R.J. J. Chem. Phys. 1982, 76, 1910. (f) Purvis, G.D.; Bartlett, R.J. ibid. 1987, 86, 7

    Article  CAS  Google Scholar 

  21. Dapprich, S.; Pidun, U.; Ehlers, A.W.; Frenking, G. chem. Phys. Lett. 1995, 242, 521.

    Article  CAS  Google Scholar 

  22. Gaussian 94: Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Gill, P.M.W.; Johnson, B.G.; Robb, M.A.; Cheeseman, J.R.; Keith, T.A.; Petersson, G.A.; Montgomery, J.A.; Raghavachari, K.; Al-Laham, M.A.; Zakrzewski, V.G.; Ortiz, J.V.; Foresman, J.B.; Cioslowski, J.; Stefanov, B.B.; Nanayakkara, A.; Challacombe, M.; Peng, C.Y.; Ayala, P.Y.; Chen, W.; Wong, M.W.; Andres, J.L.; Replogle, E.S.; Gomberts, R.; Martin, R.L.; Fox, D.J.; Binkley, J.S.; Defrees, D.J.; Baker, J.; Stewart, J.J.P.; Head-Gordon, M.; Gonzalez, C.; Pople, J.A. Gaussian Inc., Pittsburgh, PA 1995.

    Google Scholar 

  23. (a) Häser, M.; Ahlrichs, R.; J. Comput. Chem. 1989, 10, 104. (b) Ahlrichs, R.; Bar, M,; Häser, M.; Horn, H.; Kölmel, c.; Chem, Phys. Lett. 1989, 162, 165. (c) Horn, H.; Weiß, H.; Häser, M.; Ehrig, M.; Ahlrichs, R.; J. Comput. Chem. 1991, 12, 1058. (d) Häser, M.; Almlöf, J.; Feyereisen, M. W.; Theor. chim. Acta. 1991, 79, 115.

    Article  Google Scholar 

  24. ACES II, an ab initio program system written by J.F. Stanton, J. Gauss, J.D. Watts, W.J. Lauderdale and R.J. Bartlett, university of Florida, Gainesville, FL 1991.

    Google Scholar 

  25. Biegler-König, F.W.; Bader, R.F.W.; Ting-Hua, T. J. Comput. Chem. 1982, 3, 317.

    Article  Google Scholar 

  26. CDA, Dapprich, S.; Frenking, G. Marburg, 1997. The program and a manual is available via anonymous ftp: ftp.chemie.uni-marburg.de (/pub/cda).

    Google Scholar 

  27. (a) Jost, A.; Rees, B.; Acta Cryst. B 1975, 31, 2649. (b) Arnesen, S.P.; Seip, H.M.; Acta Chim. Scand. 1966, 20, 2711.

    Article  Google Scholar 

  28. Huber, K.P.; Herzberg, G. Constants of Diatomic Molecules, Van Nostrand Reinhold, New York, 1979.

    Google Scholar 

  29. Lewis, K.E.; Golden, D.M.; Smith, G.P. J. Am. Chem. Soc. 1984, 106, 3905.

    Article  CAS  Google Scholar 

  30. Cremer, D.; Kraka, E. Angew. Chem. 1984, 96, 612; Angew. Chem. Int. Ed. Engl. 1984, 23, 627.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Frenking, G., Dapprich, S., Meisterknecht, T., Uddin, J. (2000). Structure and Bonding of M(CO)3(H2O), M(CO)5(NH3), and M(CO)5(PH3) (M = Cr, Mo, W)1 . In: Russo, N., Salahub, D.R. (eds) Metal-Ligand Interactions in Chemistry, Physics and Biology. NATO Science Series, vol 546. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4245-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4245-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6126-8

  • Online ISBN: 978-94-011-4245-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics