Skip to main content

Electronic Structure of Vanadia Systems: Systematic Theoretical Studies

  • Chapter
Metal-Ligand Interactions in Chemistry, Physics and Biology

Part of the book series: NATO Science Series ((ASIC,volume 546))

Abstract

Vanadia (V2O5) containing systems are widely used as components of catalysts in industrial processes to yield valuable chemical products [1-3]. Catalytically enforced reactions involving V2O5 include mild oxidation, ammoxidation and dehydrogenation of hydrocarbons and other organic compounds, oxidation of SO2 to SO3, naphthalene or oxylene to phthalic anhydride and more recently n-butane to maleic anhydride. Vanadia catalysts also seem promising for the oxidation of toluene to benzaldehyde, methanol to formaldehyde and to methyl formate, as well as for the removal of NOX by selective reduction with NH3. From a theoretical point of view vanadia containing compounds form a large class of systems with very complex geometrical as well as physical and chemical properties which are still at the beginning of being understood at a microscopic level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vanadia Catalysts for Selective Oxidation of Hydrocarbons and Their Derivatives”, B. Grzybowska-Swierkosz, F. Trifiro, and J. C. Vedrine, eds., special issue of J. Appl. Catal. 157 (1997) 1–425.

    Google Scholar 

  2. Vanadia Catalysts for Processes of Oxidation of Aromatic Hydrocarbons ”, B. Grzybowska-Swierkosz and J. Haber, eds., PWN — Polish Scientific Publishers, Warsaw 1984.

    Google Scholar 

  3. see e. g. “Handbook of Heterogeneous Catalysis”, G. Ertl, H. Knözinger, and J. Weitkamp, VCH/Wiley Publishing, New York 1997.

    Google Scholar 

  4. S. Yoshida, S. Sakaki, and H Kobayashi, “Electronic Processes in Catalysis”, VCH-Verlag Weinheim, New York 1994.

    Google Scholar 

  5. M. Witko and K. Hermann, J. Mol. Catal. 81 (1993) 279.

    Article  CAS  Google Scholar 

  6. M. Witko and K. Hermann in “Studies in Surface Science and Catalysis”, S. V. Bellon, V. C. Corberan, eds., Vol. 82 (1994) 94.

    Google Scholar 

  7. M. Witko, K. Hermann, and R. Tokarz, J. Electr. Spectr. Rel. Phen. 69 (1994) 89.

    CAS  Google Scholar 

  8. K. Hermann, A. Michalak, and M. Witko, Catal. Today 32 (1996) 321.

    Article  CAS  Google Scholar 

  9. A. Michalak, M. Witko, and K. Hermann, Surf. Sci. 375 (1997) 385.

    Article  CAS  Google Scholar 

  10. K. Hermann, M. Witko, R. Druzinic, A. Chakrabarti, B. Tepper, M. Eisner, A. Gorschlüter, H. Kuhlenbeck, and H.-J. Freund, J. Electr. Spectr. Rel. Phen., in press.

    Google Scholar 

  11. A. Chakrabarti, K. Hermann, R. Druzinic, M. Witko, F. Wagner, and M. Petersen, Phys. Rev. B., in press.

    Google Scholar 

  12. M. Witko, R. Tokarz, and J. Haber, J. Mol. Catal. 66 (1991) 205.

    Article  CAS  Google Scholar 

  13. M. Witko, R. Tokarz, and J. Haber, J. Mol. Catal. 66 (1991) 357.

    Article  CAS  Google Scholar 

  14. M. Witko, R. Tokarz, and J. Haber, Appl. Catalysis A: General 157 (1997) 23.

    Article  CAS  Google Scholar 

  15. M. Witko, Catal. Today 32 (1996) 89.

    Article  CAS  Google Scholar 

  16. M. Witko, R. Tokarz, and K. Hermann, Coll. Czech. Chem. Comm. 63 (1998) 1355.

    Article  CAS  Google Scholar 

  17. M. Witko, R. Tokarz, and K. Hermann, Polish J. Chem. 72 (1998) 1565.

    CAS  Google Scholar 

  18. R. F. Nalewajski, J. Korchowiec, R. Tokarz, E. Broclawik, and M. Witko, J. Mol. Catal. 77 (1992) 165.

    Article  CAS  Google Scholar 

  19. R. F. Nalewajski and J. Korchowiec, J. Mol. Catal. 82 (1993) 383.

    Article  CAS  Google Scholar 

  20. J. Tomasi, J. Mol. Struct. (Theochem) 179 (1988) 273.

    Article  Google Scholar 

  21. K. Hermann, P. S. Bagus, and C. J. Nelin, Phys. Rev. B35 (1987) 9467.

    Google Scholar 

  22. J. R. Chelikowski. M. Schlüter, S. G. Louie, and M. L. Cohen, Solid. State Comm. 17 (1975) 1103.

    Article  Google Scholar 

  23. A. Szabo and N. S. Ostlund “Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory”, Macmillian, New York 1992.

    Google Scholar 

  24. E. Wimmer, in “Density Functional Methods in Chemistry”. Eds., J. K. Labanowski and J. W. Andzelm, Springer-Verlag, Heidelberg 1991.

    Google Scholar 

  25. J. Sadlej, “Semi-Empirical Methods of Quantum Chemistry CNDO, INDO, NDDO”, PWN — Polish Scientific Publishers, Warsaw, Poland and Ellis Horwood Ltd., Chichester, England 1985.

    Google Scholar 

  26. R. S. Mulliken, J. Chem. Phys. 23 (1955) 1833, 1841, 2388, 2343.

    Article  CAS  Google Scholar 

  27. I. Mayer, Chem. Phys. Lett. 97 (1983) 270.

    Article  CAS  Google Scholar 

  28. I. Mayer, J. Mol. Struct. (Theochem.) 147 (1987) 81.

    Article  Google Scholar 

  29. R. Bonaccorsi, E. Scrocco, and J. Tomasi, J. Chem. Phys. 52 (1970) 5270.

    Article  CAS  Google Scholar 

  30. R. W. G. Wyckoff, “Crystal Structures”, Interscience Publishers, John Wiley & Sons, Inc., New York — London — Sydney 1965.

    Google Scholar 

  31. H. G. Bachman, F. R. Ahmed, and W. H. Barnes, Z. Kristallogr. Kristallgeom. Kristallphys. Kristallcnem. 115 (1981) 110.

    Google Scholar 

  32. A. Byström, K. A. Wilhelmi, O. Brotzen, Acta Chem. Scand. 4 (1950) 1119.

    Google Scholar 

  33. M. C. Zerner, G. H. Loew, R. F. Kirchner, and U. T. Müller-Westerhoff, J. Am. Chem. Soc. 102 (1980) 589.

    Article  CAS  Google Scholar 

  34. A. D. Bacon and M. C. Zerner, Theor. Chim. Acta 53 (1979) 21.

    Article  CAS  Google Scholar 

  35. W. D. Edwards and M. C. Zerner, Theor. Chim Acta 72 (1987) 347.

    Article  CAS  Google Scholar 

  36. The ZINDO program package was developed by M. C. Zerner (University of Florida, Gainesville).

    Google Scholar 

  37. G. Gryminprez, L. Fiermans, and J. Vennik, Surf. Sci. 36 (1973) 370.

    Article  Google Scholar 

  38. N. U. Zhanpeisov, T. Bredow, and K. Jug, Cat. Letters 39 (1996) 111.

    Article  CAS  Google Scholar 

  39. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58 (1980) 1200.

    Article  CAS  Google Scholar 

  40. N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer, Can. J. Phys. 70(1992) 560.

    CAS  Google Scholar 

  41. The DFT-LCGTO program package DeMon was developed by A. St.-Amant and D. Salahub (University of Montreal). Here a modified version with extensions by L. G. M. Pettersson and K. Hermann is used.

    Google Scholar 

  42. W. Lambrecht, B. Djafari-Rouhani, M. Lannoo, and J. Vennik, J. Phys. C.: Solid State Phys. 13 (1980)2485.

    Article  CAS  Google Scholar 

  43. R. Ramirez, B. Casal, L. Utrera, and E. Ruiz-Hitzky, J. Phys. Chem. 94 (1990) 8960.

    Article  CAS  Google Scholar 

  44. J. P. Perdew and Y. Wang, Phys. Rev. B45 (1992) 13244.

    Google Scholar 

  45. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B46 (1992) 6671.

    Google Scholar 

  46. P. Blaha, K.-H. Schwarz, P. Sorantin, and S. B. Trickey, Comput. Phys. Commun. 59 (1990) 399.

    Article  CAS  Google Scholar 

  47. B. Kohler, S. Wilke, M. Scheffler, R. Kouba, and C. Ambrosch-Draxl, Comput. Phys. Commun. 94 (1996) 31.

    Article  CAS  Google Scholar 

  48. M. Petersen, F. Wagner, and M. Scheffler, to be published.

    Google Scholar 

  49. N. Van Hieu and D. Lichtman, J. Vac. Sci. Technol. 18 (1981) 49.

    Article  Google Scholar 

  50. S. F. Cogan, N. M. Nyugen, S. J. Perrotti, and R. D. Rauh, J. Appl. Phys. 66 (1989) 1333.

    Article  CAS  Google Scholar 

  51. A. Z. Moshfegh and A. Ignatiev, Thin Solid Films 198 (1991) 251.

    Article  CAS  Google Scholar 

  52. S. Shin, S. Suga, M. Taniguchi, M. Fujisawa, H. Kanzaki, A. Fujimori, H. Daimon, Y. Ueda, K. Kosuge, and S. Kachi, Phys. Rev. B41 (1990) 4993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Witko, M., Hermann, K., Tokarz, R., Druzinic, R., Chakrabarti, A. (2000). Electronic Structure of Vanadia Systems: Systematic Theoretical Studies. In: Russo, N., Salahub, D.R. (eds) Metal-Ligand Interactions in Chemistry, Physics and Biology. NATO Science Series, vol 546. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4245-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4245-8_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6126-8

  • Online ISBN: 978-94-011-4245-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics