Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 546))

  • 604 Accesses

Abstract

Various models used in simulations of solids are critically summarized. The main emphasis is on ab initio calculations, mainly based on density functional theory and the linearized augmented plane wave (LAPW) method, embodied in the WDEN97 code. Electron densities, static structure factors, forces, electric field gradients, magnetic moments, spectra, etc. can be obtained with this method. Reference is made to selected papers in which LAPW results are used in several applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pisani, C. (1996) (Ed.): Quantum-mechanical ab initio calculation of properties of crystalline materials, Lecture Notes in Chemistry 67

    Google Scholar 

  2. Haase, F., and Sauer J. (1995) Interaction of methanol with Brønsted acid sites of zeolite catalysts: an ab initio study, J.Am.Chem.Soc. 117, 3780

    Article  CAS  Google Scholar 

  3. Nusterer, E., Blöchl P.E., and Schwarz K. (1996) Structure and dynamics of methanol in a zeolite, Angew.Chemie, Int.Ed.Engl 35, 175

    Article  CAS  Google Scholar 

  4. Colle, R. and Salvetti, O. (1990) Generalisation of the Colle-Salvetti correlation energy method to a many determinant wave function, J.Chem.Phys. 93, 534

    Article  CAS  Google Scholar 

  5. Kohn, W. and Sham, L.J. (1965) Self-consitent equations including excahnge and correlation effects, Phys.Rev. 140, A1133

    Article  Google Scholar 

  6. Singh, D.(1994) Plane Waves, pseudopotentials and the LAPW method, Kluwer AcademicPublishers, Bosten, Dortrecht, London

    Google Scholar 

  7. Schwarz, K. and Blaha, P. (1996) Description of an LAPW DF program (WIEN95), see Pisani ref.[1] 139

    Google Scholar 

  8. Koelling, D.D. and Harmon, B.N.(1977) A technique for relativistic spin-orbit calculations, J.Phys.C: Sol.St.Phys. 10, 3107

    Article  CAS  Google Scholar 

  9. MacDonald, A. H., Pickett, W.E., and Koelling, D.D. (1980) A linearized relativistic augmented-plane-wave method utilising approximate pure spin basis functions, J.Phys.C: Solid St.Phys, 13, 2675

    Article  CAS  Google Scholar 

  10. Car R. and Parrinello, M.(1985) Unified approach for molecular dynamics and density-functional theory, Phys.Rev.Lett. 55, 2471

    Article  CAS  Google Scholar 

  11. Payne, M.C., Teter, M.P., Allen, D.C., Arias T.A., and Joannopoulos, J.D. (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev.Mod.Phys. 64, 1045

    Article  CAS  Google Scholar 

  12. Kresse, G. and Hafner, J. (1993) Ab initio molecular dynamis for liquid crystals, Phys.Rev. B 47, 558

    Article  CAS  Google Scholar 

  13. Blöchl, P.E. (1994) Projector augmented-wave method, Phys.Rev.B. 50, 17953

    Article  Google Scholar 

  14. Dovesi, R., Saunders, V.R., Roetti, C., Causa, M., Harrison, N.M., Olando R., and Aprà, E. (1996) CRYSTAL95 User’s Manual (Università di Torino, Torino)

    Google Scholar 

  15. Schwarz, K., Nusterer, E., Margl, P., and Blöchl, P.E. (1997) Ab initio molecular dynamics calculations to study catalysis, Int.J.Quantum Chem. 61, 369

    Article  CAS  Google Scholar 

  16. Blaha, P., Schwarz, K., Sorantin, P., and Trickey, S.B. (1990) Full-potential, linearized augmented plane wave programs for crystalline systems, Comput. Phys. Commun, 59, 399

    Article  CAS  Google Scholar 

  17. Blaha, P., Schwarz, K., and Luitz, J. (1997) WIEN97: A full-potential linearized augmented plane wave package for calculating crystal properties, (Vienna University of Technology, Vienna)

    Google Scholar 

  18. Dufek, P., Blaha, P., Sliwko, V., and Schwarz, K. (1994) Generalized-gradient-approximation description of band splittings in transition-metal oxides and fluorides, Phys.Rev.B 49, 10170–10175

    Article  CAS  Google Scholar 

  19. Perdew, J.,P., Burke, K., and Ernzerhof, M. (1996) Gerneralized gradient approximation made simple, Phys.Rev.Lett. 77, 3865

    Article  CAS  Google Scholar 

  20. Russo, N., ASI Series (present volume, 1999)

    Google Scholar 

  21. Sorantin, P. and Schwarz, K. (1992) Chemical bonding in rutile-type compounds, Inorg. Chem. 31, 567

    Article  CAS  Google Scholar 

  22. Zuo, J.M., Blaha, P., and Schwarz, K. (1997) The theoretical charge density of silicon: experimental testing of exchange and correlation potentials, J. Phys. Condens. Matter 9, 7541

    Article  CAS  Google Scholar 

  23. Schwarz, K., Ambrosch-Draxl, C., and Blaha, P. (1990) Charge distribution and electric field gradients in YBa2Cu3O7-x relation to the charge distribution, Phys.Rev.B, 42, 2051

    Article  CAS  Google Scholar 

  24. Dufek, P., Blaha, P., and Schwarz, K. (1995) Theoretical investigations of the pressure-induced metallization and the collaps of the antiferromagnetic state of NiI2, Phys.Rev.B 51, 4122

    Article  CAS  Google Scholar 

  25. Singh, D.J., Schwarz, K., and Blaha, P. (1992) Electric-field gradients in YBa2Cu3O7: Discrepancy between experimental and local-density-approximation charge distributions, Phys.Rev.B 46, 5849

    Article  CAS  Google Scholar 

  26. Blaha P., Singh, D.J., Schwarz, K., and Blaha, P. (1992) Electric-field-gradient calculations for systems with large extended-core-state contributions, Phys.Rev.B 46, 1321

    Article  CAS  Google Scholar 

  27. Schwarz, K. and Blaha, P. (1992) Ab initio calculations of the electric field gradients in solids in relation to the charge distribution, Z.Naturforsch. A 47, 197

    CAS  Google Scholar 

  28. Dufek, P., Blaha, P., and Schwarz, K. (1995): Determination of the nuclear quadrupole moment of 57Fe, Phys.Rev.Lett. 75, 3545

    Article  CAS  Google Scholar 

  29. Winkler, B., Blaha, P., and Schwarz, K. (1996) Ab initio calculation of electric-field-gradient tensors of forsterite, Am.Mineralog. 81, 545

    CAS  Google Scholar 

  30. Yu, R., Singh, D.J., and Krakauer, H. (19919) All-electron and pseudopotential force calculations using the linearized-augmented-pane-wave method, Phys.Rev.B 43, 6411

    Article  Google Scholar 

  31. Kohler, B., Wilke S., Scheffler M., Kouba R., and Ambrosch-Draxl, C. (1996) Force calculation and atomic-structure optimization for the full-potential linearized augmented plane-wave code WIEN, Comput. Phys. Commun, 94, 31

    Article  CAS  Google Scholar 

  32. Blaha, P., Schwarz, K., and Dufek, P., Vielsack, G., Weber, W. (1993) The breathing mode of BaBiO3: Electric field gradient and total energy calculations, Z. Naturforsch. 48a, 129

    Google Scholar 

  33. Schwarz, K. (1994) Quantum mechanical calculations based on density functional theory, PhaseTransitions, 52, 109

    CAS  Google Scholar 

  34. Sliwko, V., Mohn, P., Schwarz K., and Blaha, P. (1996) The f.c.c.-b.c.c. structral transition: I. A band theoretical study for Li, K, Rb, Ca, Sr, and the transition metals Ti and V, J. Condens. Matter 8, 817

    Article  Google Scholar 

  35. Mohn, P., Schwarz K., and Blaha, P. (1996) The f.c.c.-b.c.c. structral transition: II. A mean field model for finite temperature effects, J. Condens. Matter 8, 817

    Article  CAS  Google Scholar 

  36. Diviš, M., Mohn, P., Schwarz, K., Blaha P, and Novak, P. (1999) Electronic structure and magnetism of itinerant 5f ferromagnets URhSi and URhGe, Proceedings of International Workshop on electron correlations and materials properties, Crete, 29th June-3rd July 1998, Gonis, A. (Ed.), New York, Plenum (in press)

    Google Scholar 

  37. Ambrosch-Draxl, C., Kouba R., and Knoll, P. (1997) First-principles band-structure calculations as a tool for the quantitative interpretation of Raman spectra of high temperature superconductors, Z.Physik B, 104, 687

    Article  CAS  Google Scholar 

  38. Blaha, P., Schwarz, K. (1983) Electron density and chemical bonding in TiC, TiN, and TiO derived from energy band calculations, Int. J. Quantum Chem. 23, 1534

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schwarz, K. (2000). Band Theory: From Concepts to the LAPW Method. In: Russo, N., Salahub, D.R. (eds) Metal-Ligand Interactions in Chemistry, Physics and Biology. NATO Science Series, vol 546. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4245-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4245-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6126-8

  • Online ISBN: 978-94-011-4245-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics