Skip to main content

Gravity in Finsler Spaces

  • Chapter
Finslerian Geometries

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 109))

Abstract

It is well known how crucial computer algebra has been in the development of General Relativity and its applications, and conversely, how important General Relativity and tensorial calculus have been to motivate and direct development of computer algebra packages. Given the complexity of Riemannian geometry, curved spaces and tensorial calculus it took strong motivation, either theoretical or experimental to try and apply them to an even more generalized framework, like the theories of relativity1. Regarding observations, General Relativity and its Riemannian model for space-time surprised the scientific community of the time when it accurately predicted the advance of the perihelium of Mercury, an age-old problem of Newtonian theory, which could never be precisely dealt with in an Euclidean context. Also, its prediction for the bending of light in the gravitational field, later confirmed observationally, definitively settled the acceptance of the new theory, and seemed to have established a new paradigm for the geometry of the physical space.

At one time [16] the attempt to formulate an unifying theory for gravity and electromagnetism led to unsuccessful attempts at Finsler [13] and other generalized geometrical modelling of natural phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aringazin, A.K. and Asanov, G.S. (1985) Finslerian Post-Riemannian Corrections to the Equations of Geodesics, General Relativity and Gravitation, 17, 12, 1153–1163.

    Article  MathSciNet  MATH  Google Scholar 

  2. Asanov, G.S. (1979) On Finslerian Relativity. Nuovo Cimento, 49, 221–246.

    Article  MathSciNet  Google Scholar 

  3. Bao, D., Chern, S.-S. and Shen, Z. (eds.) (1996) Finsler Geometry, Contemporary Math., 196, AMS, Providence, 1996.

    Google Scholar 

  4. Bao, D. and Chern, S.-S. (1993) On a Notable Connection in Finsler Geometry, Houston J. of Mathematics, 19, 1, 135–180.

    MathSciNet  MATH  Google Scholar 

  5. Berwald, L. (1947) Projektivkrümmung allgemeiner affiner Räume und Finslersche Räume skalarer Krümmung, Ann. Math. 48(2), 755–781.

    Article  MathSciNet  MATH  Google Scholar 

  6. Berwald, L. (1941) Über Finslersche und Cartansche Geometrie I, Mathematica, Timisoara, 17, 34–55.

    MathSciNet  Google Scholar 

  7. Bogoslovsky, G.Yu. (1977) A Special-Relativistic Theory of the Locally Anisotropic Space-Time, I, II, Nuovo Cimento, 40B,1, 99–115, 116–134.

    Google Scholar 

  8. Bogoslovsky, G.Yu. (1992) From the Weyl Theory to a Locally Anisotropic Spacetime, Classical and Quantum Gravity, 9, 569–575.

    Article  MathSciNet  MATH  Google Scholar 

  9. Cartan, É. (1934) Les espaces de Finsler, Actualités, Paris, 79.

    MATH  Google Scholar 

  10. Coley, A.A. (1982) Clocks and Gravity, General Relativity Gravitation, 14, 1107–1114.

    Article  MathSciNet  MATH  Google Scholar 

  11. D’Inverno, R. (1992) Introducing Einstein’s Relativity, Clarendon, Oxford.

    MATH  Google Scholar 

  12. Drake, S.P. and Turolla, R. (1997) The Application of the Newman-Janis Algorithm in Obtaining Interior Solutions of the Kerr Metric, Preprint.

    Google Scholar 

  13. Finsler, P. (1918) Über Kurven und Flächen in Allgemeinen Räumen, Dissertation, Göttingen Univ.

    Google Scholar 

  14. Hearn, A.C. (1991) REDUCE User’s Manual Version 3.4, Rand, Santa Monica.

    Google Scholar 

  15. Ishikawa, H. (1981) Note on Finslerian Relativity. J. Math. Phys., 22,5, 995–1004.

    Article  MathSciNet  MATH  Google Scholar 

  16. Kilmister, D.A. and Stephenson, G. (1954) An Axiomatic Criticism of Unified Field Theories — I, II, Nuovo Cimento, 11Suppl. 91–105, 118–140.

    MathSciNet  Google Scholar 

  17. Landau, L.D. and Lifshitz, E.M. (1962) The Classical Theory of Fields, Pergamon, Oxford, London, Paris, Frankfurt, Revised 2nd. Ed.

    MATH  Google Scholar 

  18. Maple Char, B.W. et al. (1992) First Leaves: A Tutorial Introduction to Maple V, Springer-Verlag, Berlin.

    Book  Google Scholar 

  19. Matsumoto, M. (1986) Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha, Saikawa, ÅŒtsu.

    MATH  Google Scholar 

  20. Matsumoto, M. (1975) On Einstein’s Gravitational Field Equation in a Tangent Riemannian Space of a Finsler Space, Reports on Math. Physics, 8, 103–108.

    Article  MATH  Google Scholar 

  21. McCarthy, P.J. and Rutz, S.F. (1993) The General Four-dimensional Spherically Symmetric Finsler Space, General Relativity and Gravitation, 25, 589–602.

    Article  MathSciNet  MATH  Google Scholar 

  22. Newman E.T. et al. (1964) Metric of a Rotating Charged Mass, J. Math. Phys., 6, 918–919.

    Article  Google Scholar 

  23. Newman, E.T. and Janis, A.I. (1965) Note on the Kerr Spinning-Particle Metric, J. Math. Phys., 6, 915–917.

    Article  MathSciNet  MATH  Google Scholar 

  24. Pirani, F.A.E. (1965) Lecture 2, in Lectures on General Relativity I, S. Deser and K.W. Ford, eds., Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  25. Riemann, B. (1854) Über die Hypothesen, Welche der Geometrie Zugrunde Liegen, Habilitationsvortrag, Werke, Leipzig, 272–287, Leipzig, 1892.

    Google Scholar 

  26. Roxburgh, I.W. (1991) Finsler Spaces with Riemannian Geodesics, General Relativity and Gravitation, 23,9, 1071–1080.

    Article  MathSciNet  MATH  Google Scholar 

  27. Roxburgh, I.W. (1992) Post Newtonian Limit of Finsler Space Theories of Gravity and Solar System Tests, General Relativity and Gravitation, 24, 419–431.

    Article  MathSciNet  MATH  Google Scholar 

  28. Roxburgh, I.W. and Tavakol, R.K. (1979) Non-Riemann Geometrizable Effects in the Gravitational One-Body Problem, General Relativity and Gravitation, 10,4, 307–312.

    Article  MATH  Google Scholar 

  29. Rund, H. (1959) The Differential Geometry of Finaler Spaces, Springer-Verlag, Berlin.

    Book  Google Scholar 

  30. Rutz, S.F. (1993) A Finsler Generalisation of Einstein’s Vacuum Field Equations, General Relativity and Gravitation, 25, 1139–1158.

    Article  MathSciNet  MATH  Google Scholar 

  31. Rutz, S.F. (1993) Symmetry and Gravity in Finsler Spaces, PhD thesis, Queen Mary & Westfield College, University of London.

    Google Scholar 

  32. Rutz, S.F. (1996) Symmetry in Finsler Spaces. In Bao, D., Chern, S.-S. and Shen, Z. (eds.) (1996) Finsler Geometry, Contemporary Math., 196, AMS, Providence, 1996 [3], 289–300.

    Google Scholar 

  33. Rutz, S.F. (1998) Theorems of Birkhoff’s Type in Finsler Spaces, To appear in the Thematic Issue on Computer Algebra and Its Use in Physics, Computer Physics Communications.

    Google Scholar 

  34. Rutz, S.F., Skea, J., Paiva, F.M. and Sautu, S. (in press) Finsler: A Computer Algebra Package for Finsler Geometry.

    Google Scholar 

  35. Schiffer, M.M. et al. (1972) Kerr Geometry as Complexified Schwarzschild Geometry, J. Math. Phys., 14, 52–56.

    Article  MathSciNet  Google Scholar 

  36. Takano, Y. (1974) Gravitational Field in Finsler Spaces, Lett. Nuovo Ci-mento, 10,17, 747–750.

    Article  MathSciNet  Google Scholar 

  37. Tavakol, R.K. and Van der Bergh, N. (1986) Viability Criteria for the Theories of Gravity and Finsler Spaces, General Relativity and Gravitation, 18, 849–859.

    MathSciNet  MATH  Google Scholar 

  38. Walker, A.G. (1944) Completely Symmetric Spaces, Journal of The London Mathematical Society, 19, 219–226.

    Article  MATH  Google Scholar 

  39. Wolf, T. and Brand, A. (1997) The Computer Algebra Package CRACK for Investigating PDEs, REDUCE library: documentation in LATEX within version 3.5.

    Google Scholar 

  40. Yano, K. (1955) The Theory of Lie Derivatives and Its Applications, North-Holland, Amsterdam.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rutz, S.F., Paiva, F.M. (2000). Gravity in Finsler Spaces. In: Antonelli, P.L. (eds) Finslerian Geometries. Fundamental Theories of Physics, vol 109. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4235-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4235-9_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5838-4

  • Online ISBN: 978-94-011-4235-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics