Skip to main content

Far Ultraviolet Imaging from the Image Spacecraft: 1. System Design

  • Chapter
The Image Mission

Abstract

Direct imaging of the magnetosphere by the IMAGE spacecraft will be supplemented by observation of the global aurora, the footprint of magnetospheric regions. To assure the simultaneity of these observations and the measurement of the magnetospheric background neutral gas density, the IMAGE satellite instrument complement includes three Far Ultraviolet (FUV) instruments. In the wavelength region 120-190 nm, a downward-viewing auroral imager is only minimally contaminated by sunlight, scattered from clouds and ground, and radiance of the aurora observed in a nadir viewing geometry can be observed in the presence of the high-latitude dayglow. The Wideband Imaging Camera (WIC) will provide broad band ultraviolet images of the aurora for maximum spatial and temporal resolution by imaging the LBH N2 bands of the aurora. The Spectrographic Imager (SI), a monochromatic imager, will image different types of aurora, filtered by wavelength. By measuring the Doppler-shifted Ly-α, the proton-induced component of the aurora will be imaged separately. Finally, the GEO instrument will observe the distribution of the geocoronal emission, which is a measure of the neutral background density source for charge exchange in the magnetosphere. The FUV instrument complement looks radially outward from the rotating IMAGE satellite and, therefore, it spends only a short time observing the aurora and the Earth during each spin. Detailed descriptions of the WIC., SI, GEO, and their individual performance validations are discussed in companion papers. This paper summarizes the system requirements and system design approach taken to satisfy the science requirements. One primary requirement is to maximize photon collection efficiency and use efficiently the short time available for exposures. The FUV auroral imagers WIC and SI both have wide fields of view and take data continuously as the auroral region proceeds through the field of view. To minimize data volume, multiple images are taken and electronically coadded by suitably shifting each image to compensate for the spacecraft rotation. In order to minimize resolution loss, the images have to be distortion-corrected in real time for both WIC and SI prior to co-adding. The distortion correction is accomplished using high speed look up tables that are pregenerated by least square fitting to polynomial functions by the on-orbit processor. The instruments were calibrated individually while on stationery platforms, mostly in vacuum chambers as described in the companion papers. Extensive ground-based testing was performed with visible and near UV simulators mounted on a rotating platform to estimate their on-orbit performance. The predicted instrument system performance is summarized and some of the preliminary data formats are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajello, J. M: 1990, ‘Solar Minimum Lyman-α Sky Background Observations from Pioneer Venus Orbiter Ultraviolet Spectrometer: Solar Wind Latitude Variation’, J. Geophys. Res. 95, 14855–14861.

    Article  ADS  Google Scholar 

  • Anger, C. D., Babey, S. K., Broadfoot, A. Lyle, Brown, R. G., Cogger, L. L., Gattinger, R., Haslett, J. W., King, R. A., McEwen, D. J., Murphree, J. S., Richardson, E. H., Sandel, B. R., Smith, K. and Jones, A. V.: 1987, ‘An Ultraviolet Auroral Imager for the Viking Spacecraft’, Geophys. Res. Lett. 14, 387.

    Article  ADS  Google Scholar 

  • Bishop, J.: 1999, ‘Transport of Resonant Atomic Hydrogen Emissions in the Thermosphere and Geocorona: Model Description and Applications’, J. Quant. Spectrosc. Radiat. Transfer 61, 473.

    Article  ADS  Google Scholar 

  • Coroniti, F. V and Kennel, C. F.: 1972, ‘Changes in Magnetospheric Configuration During the Substorm Growth Phase’, J. Geophys. Res. 19, 3361.

    Article  ADS  Google Scholar 

  • Drob, D. P., Meier, B. R., Picone, J. M., Strickland, D. J., Cox, R. J. and Nicholas, A. C.: 1999, ‘Atomic Oxygen in the Thermosphère During the July 13, 1982, Solar Proton Event Deduced from Far Ultraviolet Images’, J. Geophys. Res. 104, 4267.

    Article  ADS  Google Scholar 

  • Frank, L. A., Craven, J. D., Ackerson, K. L., English, M. R., Eather, R. H. and Crovillano, R. L.: 1981, ‘Global Auroral Imaging Instrumentation for the Dynamics Explorer Mission’, Space Sci. Instrum. 5, 369–393.

    ADS  Google Scholar 

  • Frank, L. A. and Craven, J. D.: 1988, ‘Imaging Results from Dynamics Explorer 1’, Rev. Geophys. 2, 249.

    Article  ADS  Google Scholar 

  • Frank, L. A. and Sigwarth, J. B.: 1999, ‘Atmospheric Holes: Instrumental and Geophysical Effects’, J. Geophys. Res. 104, 115.

    Article  ADS  Google Scholar 

  • Fuselier, S. A., Klumpar, D. M. and Shelley, E. G.: 1991, Ton Reflection and Transmission During Reconnection at the Earth’s Subsolar Magnetopause’, Geophys. Res. Lett. 18, 139.

    Article  ADS  Google Scholar 

  • Gladstone, G. R.: 1994, ‘Simulations of DE-1 UV Airglow Images’, J. Geophys. Res. 99, 11,441.

    Google Scholar 

  • Hodges, R. R.: 1994, ‘Monte Carlo Simulation of the Terrestrial Hydrogen Exosphere’, J. Geophys. Res. 99, 23,229.

    Google Scholar 

  • Hunten, D. M., Roach, F. E. and Chamberlain, J. W.: 1956, ‘A Photometric Unit for the Airglow and Aurora’, J. Atmos. Terr. Phys. 8, 345–346.

    Article  Google Scholar 

  • Immel, T. J., Craven, J. D. and Frank, L. A.: 1997, ‘Influence of IMF By on Large-Scale Decreases of O Column Density at Middle Latitudes’, J. Atmos. Terr. Phys. 59, 725.

    Article  ADS  Google Scholar 

  • Jorgensen, A. M., Spence, H. E., Henderson, M. G., Reeves, G. D., Sugiura, M. and Kamei, T.: 1997, ‘Global Energetic Neutral Atom (ENA) Measurements and Their Association with the Dst Index’, Geophys. Res. Lett. 24, 3173–3176.

    Article  ADS  Google Scholar 

  • Lockwood, M., Chandler, M. O., Horowitz, J. L., Waite, J. H., Jr., Moore, T. E. and Chappell, C. R.: 1985, ‘The Cleft Ion Foundation’, J. Geophys. Res. 90, 9736.

    Article  ADS  Google Scholar 

  • Lui, A. T. Y., Venkatesan, D. and Murphree, J. S.: 1989, ‘Auroral Bright Spots on the Dayside Oval’, J. Geophys. Res. 94, 5515.

    Article  ADS  Google Scholar 

  • Lui, A. T. Y., Williams, D. J., Roelof, E. C., McEntire, R. W. and Mitchell, D. G.: 1996, ‘First Composition Measurements of Energetic Neutral Atoms’, Geophys. Res. Lett. 23, 2641–2644.

    Article  ADS  Google Scholar 

  • Meier, R. R.: 1991, ‘Ultraviolet Spectroscopy and Remote Sensing of the Upper Atmosphere’, Space Sci. Rev. 58, 1.

    Article  ADS  Google Scholar 

  • Murphree, J. S., King, R. A., Payne, T., Smith, K., Reid, D., Adema, J., Gordon, B. and Wlochowicz, R.: 1994, ‘The Freja Ultraviolet Imager’, Space Sci. Rev. 70, 421–446.

    Article  ADS  Google Scholar 

  • Pollock, C. J., Chandler, M. O., Moore, T. E., Waite, J. H., Jr., Chappell, C. R. and Gurnett, D.: 1990, ‘A Survey of Upwelling Ion Event Characteristics’, J. Geophys. Res. 95, 18969.

    Article  ADS  Google Scholar 

  • Rairden, R. L., Frank, L. A. and Craven, J. D.: 1986, ‘Geocoronal Imaging with Dynamics Explorer’, J. Geophys. Res. 91, 13,613.

    Google Scholar 

  • Roelof, E. C.: 1987, ‘Energetic Neutral Atom Image of the Storm Time Ring Current’, Geophys. Res. Lett. 14, 652.

    Article  ADS  Google Scholar 

  • Roelof, E. C., Mitchell, D. G. and Williams, D. J.: 1985, ‘Energetic Neutral Atoms(E ∼ 50 keV) from the Ring Current: IMP 7/8 and ISEE 1’, J. Geophys. Res. 90, 10,991.

    Google Scholar 

  • Strickland, D. J. and Anderson, D. E., Jr.: 1983, ‘Radiation Transport Effects on the OI 1356-AA Limb Intensity Profile in the Dayglow’, J. Geophys. Res. 88, 9260.

    Article  ADS  Google Scholar 

  • Strickland, D. J., Jasperse, J. P. and Whalen, J. A.: 1983, ‘Dependence of Auroral FUV Emissions on the Incident Electron Spectrum and Neutral Atmosphere’, J. Geophys. Res. 88, 8051–8062.

    Article  ADS  Google Scholar 

  • Strickland, D. J., Daniell, R. E., Jr., Jasperse, J. R. and Basu, B.: 1993, ‘Transport-Theoretic Model for the Electron-Proton-Hydrogen Atom Aurora’, J. Geophys. Res. 98, 21533.

    Article  ADS  Google Scholar 

  • Strickland, D. J., Evans, J. S. and Paxton, L. J.: 1995, ‘Satellite Remote Sensing of Thermospheric O/N2 and Solar EUV. 1. Theory’, J. Geophys. Res. 100, 12, 217–222, 26.

    Google Scholar 

  • Strickland, D. J., Cox, R. J., Meier, R. R. and Drob, D. P.: 1999, ‘Global O/N2 Derived from DE-1 FUV Dayglow Data: Technique and Examples from Two Storm Periods’, J. Geophys. Res. 104, 4251.

    Article  ADS  Google Scholar 

  • Torr, M. R., Torr, D. G., Zukic, M., Johnson, R. B., Ajello, J., Banks, P., Clark, K., Cole, K., Keffer, C., Parks, G., Tsuratani, B. and Spann, J.: 1995, ‘A Far Ultraviolet Imager for the International Solar-Terrestrial Physics Mission’, Space Sci. Rev. 71, 329.

    Article  ADS  Google Scholar 

  • Williams, D. J., Roelof, E. C. and Mitchell, D. G.: 1992, ‘Global Magnetospheric Imaging’, Rev. Geophys. 30, 183–208.

    Article  ADS  Google Scholar 

  • Williams, D. J.: 1990, ‘Why We Need Global Observations’, in B. Hultquist and C. G. Fälthammer (eds), Magnetospheric Physics, Plenum, New York, pp. 83–101.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mende, S.B. et al. (2000). Far Ultraviolet Imaging from the Image Spacecraft: 1. System Design. In: Burch, J.L. (eds) The Image Mission. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4233-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4233-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5837-7

  • Online ISBN: 978-94-011-4233-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics