Skip to main content

The Low-Energy Neutral Atom Imager for Image

  • Chapter
The Image Mission

Abstract

The ‘Imager for Magnetosphere-to-Aurora Global Exploration’ (IMAGE) will be launched early in the year 2000. It will be the first mission dedicated to imaging, with the capability to determine how the magnetosphere changes globally in response to solar storm effects in the solar wind, on time scales as short as a few minutes. The low energy neutral atom (LENA) imager uses a new atom-to-negative ion surface conversion technology to image the neutral atom flux and measure its composition (H and O) and energy distribution (10 to 750 eV). LENA uses electrostatic optics techniques for energy (per charge) discrimination and carbon foil time-of-flight techniques for mass discrimination. It has a 90° x 8° field-of-view in 12 pixels, each nominally 8° x 8°. Spacecraft spin provides a total field-of-view of 90° x 360°, comprised of 12 x 45 pixels. LENA is designed to image fast neutral atom fluxes in its energy range, emitted by auroral ionospheres or the sun, or penetrating from the interstellar medium. It will thereby determine how superthermal plasma heating is distributed in space, how and why it varies on short time scales, and how this heating is driven by solar activity as reflected in solar wind conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aellig, M. R., et al.: 1998, ‘Surface Ionization with Cesiated Converters for Space Applications’, Geophysical Monograph 103, Am. Geophys. Un., Washington, DC., p. 289.

    Article  Google Scholar 

  • Collin, H. L., Peterson, W. K., Lennartsson, O. W. and Drake, J. F.: 1998, ‘The Seasonal Variation of Auroral Ion Beams’, Geophys. Res. Lett. 25(21), 4071.

    Article  ADS  Google Scholar 

  • Dahl, D.: 1995, SIMION 3D 6.0, pub. # INEL-95/0403, Idaho National Engineering Laboratory, Chemical Materials and Process Department, Lockheed Idaho Technoloes Co., Idaho Falls, ID.

    Google Scholar 

  • Delcourt, D. C., et al.: 1988, ‘Influence of the Interplanetary Magnetic Field Orientation on Polar Cap Ion Trajectories: Energy Gain and Drift Effects’, J. Geophys. Res. 93, 7565.

    Article  ADS  Google Scholar 

  • Fasola, J.: 1977, ‘H-Source Development at ANL’, IEEE Trans. Nucl. Sci. NS-24, 1597.

    Article  ADS  Google Scholar 

  • Ghielmetti, A. G., Shelley, E. G., Fuselier, S., Wurz, P., Bochsler, P., Herrero, F., Smith, M. F. and Stephen, T.S.: 1994, ‘Mass Spectrograph for Imaging Low-Energy Atoms’, Opt. Eng. 33, 362.

    Article  ADS  Google Scholar 

  • Giles, B. L., et al.: 1994, ‘Statistical Survey of Pitch Angle Distributions in Core (0-50 eV) Ions from Dynamics Explorer 1: Outflow in the Auroral Zone, Polar Cap, and Cusp’, J. Geophys. Res. 99, 17483.

    Article  ADS  Google Scholar 

  • Gloeckler, G. and Hsieh, K. C.: 1979, ‘Time-Of-Flight Technique for Particle Identification at Energies from 2-400 keV/Nucleon’, Nucl Instr. Meth. 165, 537.

    Article  Google Scholar 

  • Gruntman, M.: 1992, ‘A New Technique for in situ Measurement of the Composition of Neutral Gas in Interplanetary Space’. Planetary Space Sci. 41(4), 307.

    Article  ADS  Google Scholar 

  • Gruntman, M.: ‘Energetic Neutral Atom Imaging of Space Plasmas’, Rev. Sci. Instrum. 68(10), 3617.

    Google Scholar 

  • Hardy, D. A., et al: 1987, ‘Statistical and Functional Representation of the Pattern of Auroral Energy Flux, Number Flux, and Conductivity’, J. Geophys. Res. 92, 12275.

    Article  ADS  Google Scholar 

  • Herrero, F. A. and Smith, N. F.: 1992, ‘Imager of Low Energy Neutral Atoms (ILENA): Imaging Neutral Atoms from the Magnetosphere at Energies Below 20 keV, Instrumentation for Magnetospheric Imagery, SPIE pub. # 1,744, pp. 32–39.

    Google Scholar 

  • Moore, T. E. and Delcourt, D. C.: 1995, ‘The Geopause’, Rev. Geophys. 33(2), 175.

    Article  ADS  Google Scholar 

  • Moore, T. E., et al.: 1999, ‘Ionospheric Mass Ejection Response to a CME’, Geophys. Res. Lett. 26(15), 1.

    Article  Google Scholar 

  • Pargellis, A. and Scidl, M.: 1982, ‘Formation of H-Ions by Backscattering Thermal Hydrogen Atoms from a Cesium Surface’, Phys. Rev. B 25(7), 4356.

    Article  ADS  Google Scholar 

  • Probst, F. M. and Luescher, E.: 1963, ‘Auger Electron Ejection from Tungsten Surfaces by Low Energy Ions’, Phys. Rev. 132, 1037.

    Article  ADS  Google Scholar 

  • Pollock, C. J., et al: 1990, ‘A Survey of Upwelling Ion Event Characteristics’, J. Geophys. Res. 95, 18969.

    Article  ADS  Google Scholar 

  • Reijnen, P. H. F., van Slooten, U. and Kleyn, A. W.: 1991, ‘Negative Ion Formation and Dissociatio in Scattering of Fast 02 and NO from Ag(l 11), and Pt(l 11)’, J. Chem. Phys. 94(1), 695.

    Article  ADS  Google Scholar 

  • Roelof, E. C.: 1987, ‘Energetic Neutral Atom Image of a Storm-Time Ring Current’, Geophys. Res. Lett. 14, 652.

    Article  ADS  Google Scholar 

  • Schneider, P. J., Eckstein, W. and Verbeek, H.: 1982, ‘Charge States of Reflected Particles for Grazing Incidence on D+, D2+, and Do on Ni and Cs Targets’, Nucl. Instrum. Meth. 194, 387.

    Article  ADS  Google Scholar 

  • Smith, M. F., et al.: 1998, ‘Imaging Low-Energy (keV) Neutral Atoms: Ion-Optical Design’, Geophysical Monograph #103, Am. Geophys. Un; Washington DC., p. 263.

    Google Scholar 

  • Snowdon, K. J., Willerding, B. and Heiland, W.: 1986, ‘Molecule Excitation in Sputtering, Scattering, and Electron or Photon Induced Desorption’, Nucl. Instrum. Meth. B 14, 467.

    Article  ADS  Google Scholar 

  • Stephen, T. M., Van Zyl, B. and Amme, R. C.: 1996, ‘Generation of a Fast-Oxygen Beam from O-Ions by Resonant Cavity Radiation’, Rev. Sci. Instrum. 67(4), 1478.

    Article  ADS  Google Scholar 

  • Taglauer, E.: 1985, ‘Investigation of the Local Atomic Arrangement on Surfaces Using Low-Energy Ion Scattering’, Appl. Phys. A 38, 161.

    Article  Google Scholar 

  • Van Toledo, W.: 1986, ‘Formation of Negative Hydrogen Ions on a Cesiated Tungsten Surface and its Application to Plasma Physics’, Proc. of Production and Application of Light Negative Ions, Laboratoire de Physique des Milieuex Ionises, École Polytechnique, Palaiseau, France, p. 193.

    Google Scholar 

  • Van Slooten, U., Andersson, D. R. and Kleyn, A. W.: 1992, ‘Scattering of Fast Molecular Hydrogen from Ag(111)’, Surf. Sci. 274, 1.

    Article  Google Scholar 

  • Volland, H.: 1978, ‘A Model of the Magnetospheric Electric Convection Field’, J. Geophys. Res. 83, 2695.

    Article  ADS  Google Scholar 

  • Walton, D. M., James, A. M., Bowles, J. A.: 1998, ‘High Speed 2-D Imaging for Plasma Analyzers Using Wedge-and-Strip Anodes’, Measurement Techniques Space Plasmas: Particles’, Geophysical Monograph #102, AGU, Washington, DC., p. 295.

    Google Scholar 

  • Wurz, P., Bochsler, P., Ghielmetti, A. G., Shelley, E. G., Herrero, F. and Smith, M. F.: 1993, ‘Concept for the HI-LITE Neutral Atom Imaging Instrument’, in P. Varga and G. Betz (eds), Proceedings of Symposium on Surface Science, Kaprun, Austria, p. 225.

    Google Scholar 

  • Wurz, P., Aellig, M. R., Bochsler, P., Ghielmetti, A. G., Shelley, E. G., Fuselier, S. A., Herrero, F., Smith, M. F., Stephen, T. S.: 1995, ‘Neutral Atom Mass Spectrograph’, Opt. Eng. 34, 2365.

    Article  ADS  Google Scholar 

  • Wurz, P., Frohlich, T., Brüning, K., Scheer, J., Heilourd, W., Hertzberg, E., Fuselier, S. A.: 1998, ‘Formation of Negative Ions by Scattering from a Diamond (111) Surface’, in J. Safrankova, and A. Koruka (eds), Proc. of the week of doctoral students, Charles University, Prague, Czech Republic, p. 257.

    Google Scholar 

  • Yau, A. W., et al.: 1988, ‘Quantitative Parametrization of Energetic Ionospheric Ion Outflow’, in Modeling Magnetospheric Plasma’, T. E. Moore and J. H. Waite, Jr. (eds), Geophys. Mono. #44, AGU, Washington, DC., p. 211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Moore, T.E. et al. (2000). The Low-Energy Neutral Atom Imager for Image. In: Burch, J.L. (eds) The Image Mission. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4233-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4233-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5837-7

  • Online ISBN: 978-94-011-4233-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics