Skip to main content

Far Ultraviolet Imaging from the Image Spacecraft. 3. Spectral Imaging of Lyman-∝ and OI 135.6 nm

  • Chapter
Book cover The Image Mission

Abstract

Two FUV Spectral imaging instruments, the Spectrographic Imager (SI) and the Geocorona Photometer (GEO) provide IMAGE with simultaneous global maps of the hydrogen (121.8 nm) and oxygen 135.6 nm components of the terrestrial aurora and with observations of the three dimensional distribution of neutral hydrogen in the magnetosphere (121.6 nm). The SI is a novel instrument type, in which spectral separation and imaging functions are independent of each other. In this instrument, two-dimensional images are produced on two detectors, and the images are spectrally filtered by a spectrograph part of the instrument. One of the two detectors images the Dopplershifted Lyman-α while rejecting the geocoronal ‘cold’ Ly-α, and another detector images the OI 135.6 nm emission. The spectrograph is an all-reflective Wadsworth configuration in which a grill arrangement is used to block most of the cold, un-Doppler-shifted geocoronal emission at 121.567 nm. The SI calibration established that the upper limit of transmission at cold geocoronal Ly-α is less than 2%. The measured light collecting efficiency was 0.01 and 0.008 cm2 at 121.8 and at 135.6 nm, respectively. This is consistent with the size of the input aperture, the optical transmission, and the photocathode efficiency. The expected sensitivity is 1.8 x 10-2 and 1.3 x 10-2 counts per Rayleigh per pixel for each 5 s viewing exposure per satellite revolution (120 s). The measured spatial resolution is better than the 128 x 128 pixel matrix over the 15° x 15° field of view in both wavelength channels. The SI detectors are photon counting devices using the cross delay line principle. In each detector a triple stack microchannel plate (MCP) amplifies the photo-electronic charge which is then deposited on a specially configured anode array. The position of the photon event is measured by digitizing the time delay between the pulses detected at each end of the anode structures. This scheme is intrinsically faster than systems that use charge division and it has a further advantage that it saturates more gradually at high count rates. The geocoronal Ly-α is measured by a three-channel photometer system (GEO) which is a separate instrument. Each photometer has a built in MgF2 lens to restrict the field of view to one degree and a ceramic electron multiplier with a KBr photocathode. One of the tubes is pointing radially outward perpendicular to the axis of satellite rotation. The optic of the other two subtend 60° with the rotation axis. These instruments take data continuously at 3 samples per second and rely on the combination of satellite rotation and orbital motion to scan the hydrogen cloud surrounding the earth. The detective efficiencies (effective quantum efficiency including windows) of the three tubes at Ly-α are between 6 and 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajello, J. M: 1990, ‘Solar Minimum Ly-α Sky Background Observations from Pioneer Venus Orbiter Ultraviolet Spectrometer: Solar Wind Latitude Variation’, J. Geophys. Res. 95, 14855–14861.

    Article  ADS  Google Scholar 

  • Anderson, D. E. and Hord, C. W.: 1977, ‘Multidimensional Radiative Transfer — Applications to Planetary Coronae’, Planetary Space Sci. 25, 563–571.

    Article  ADS  Google Scholar 

  • Anger, C. D., Murphree, J. S., Vallance-Jones, A., King, R. A., Broadfoot, A. L., Cogger, L. L., Creutzberg, F., Gattinger, R. L., Gustafsson, G., Harris, F. R., Haslett, J. W., Llewellyn, E. J., McConnell, J. C., McEwen, D. J., Richardson, E. H., Rostoker, G., Sandel, B. R., Shepherd, G. G., Venkatesan, D., Wallis, D. D. and Witt, G.: 1987, ‘Scientific Results from the Viking Ultraviolet Imager: An Introduction’, Geophys. Res. Lett. 14, 383–386.

    Article  ADS  Google Scholar 

  • Basu, B., Jasperse, J. R., Strickland, D. J. and Daniell, R. E.: 1993, ‘Transport-Theoretic Model for the Electron-Proton-Hydrogen Atom Aurora’, J. Geophys. Res. 98, 21, 517–521, 532.

    Google Scholar 

  • Bishop, J.: 1999, ‘Transport of Resonant Atomic Hydrogen Emissions in the Thermosphère and Geocorona: Model Description and Applications’, J. Quant. Spectr. Rad. Transfer 61, 473–491.

    Article  ADS  Google Scholar 

  • Bush, B. and Chakrabarti, S.: 1995, ‘Analysis of Ly-α and He I 584-Å Airglow Measurements Using a Spherical Radiative Transfer Model’, J. Geophys. Res. 100, 19609–19625.

    Article  ADS  Google Scholar 

  • Chamberlain, J. W.: 1963, ‘Planetary Coronae and Atmospheric Evaportaion’, Planetary Space Sci. 11, 901–960.

    Article  ADS  Google Scholar 

  • Eather R. H.: 1967, ‘Auroral Proton Precipitation and Hydrogen Emissions’, Rev. Geophys. Space Phys. 5, 207–285.

    Article  ADS  Google Scholar 

  • Edgar, B. C., Miles, W. T. and Green, A. E. S.: 1973, ‘Energy Deposition of Protons in Molecular Nitrogen and Application to Proton Auroral Phenomena’, J. Geophys. Res. 78, 6595–6606.

    Article  ADS  Google Scholar 

  • Frank, L. A. and Craven, J. D.: 1988, ‘Imaging Results from Dynamics Explorer 1’, Rev. Geophys. 26, 249–283.

    Article  ADS  Google Scholar 

  • Galand, M. and Richmond, A. D.: 1999, ‘Magnetic Mirroring in an Incident Proton Beam’, J. Geophys. Res. 104, 4447–4455.

    Article  ADS  Google Scholar 

  • Ishimoto, M., Meng, C. I., Romick, G. R. and Huffman, R. E.: 1989, ‘Anomalous UV Auroral Spectra During a Large Magnetic Disturbance’, J. Geophys. Res. 94, 6955–6960.

    Article  ADS  Google Scholar 

  • Jasperse, J. R. and Basu, B.: 1982, ‘Transport Theoretical Solutions for Auroral Proton and H Atom Fluxes and Related Quantities’, J. Geophys. Res. 87, 811–822.

    Article  ADS  Google Scholar 

  • Jelinsky, S. R., Siegmund, O. H. W. and Mir, J. A.: 1996, ‘Progress in Soft X-Ray and UV Photocathodes’, Proc. SPIE 2808, 617–625.

    Article  ADS  Google Scholar 

  • Lampton, M. O., Siegmund and Raffanti, R.: 1987, ‘Delay Line Anodes for MicroChannel Plate Spectrometers’, Rev. Sci. Instrum, 58, 2298–2305.

    Article  ADS  Google Scholar 

  • Lampton, M.: 1998, ‘A Timing Discriminator for Space Flight Applications’, Rev. Sci. Instrum. 69, 3062–3065.

    Article  ADS  Google Scholar 

  • Lemaitre, M.-P., Laurent, J., Besson, J., Girard, A., Lippens, C., Muller, C., Vercheval, J. and Ackerman, M.: 1984, ‘Sample Performance of the Grille Spectrometer’, Science 225, 171–172.

    Article  ADS  Google Scholar 

  • Loewen, E. G. and Popov, E.: 1997, Diffraction Gratings and Applications, Marcel Dekker, Inc., New York, p. 175ff.

    Google Scholar 

  • Marov, M. Y, Shematovich, V. L, Bisikalo, D. V. and Gerard, J. C.: 1997, Nonequilibrium Processes in the Planetary and Cometary Atmospheres: Theory and Applications, Kluwer Academic Publishers, Dordrecht.

    Book  Google Scholar 

  • Meier, R. R.: 1991, ‘Ultraviolet Spectroscopy and Remote Sensing of the Upper Atmosphere’, Space Sci. Rev. 58, 1–185.

    Article  ADS  Google Scholar 

  • Pryor, W. R., Witte, M. and Ajello, J. M.: 1998, ‘Interplanetary Ly-α Remote Sensing with the Ulysses Interstellar Neutral Gas Experiment’, J. Geophys. Res. 103, 26813–26831.

    Article  ADS  Google Scholar 

  • Rairden, R. L., Frank, L. A. and Craven, J. D.: 1986, ‘Geocoronal Imaging with Dynamics Explorer’, J. Geophys. Res. 91, 13613–13630.

    Article  ADS  Google Scholar 

  • Siegmund, O. H. W. and Stock, J.: 1991, ‘Performance of Low Resistance MicroChannel Plate Stacks’, Proc. SPIE 1549, 81–89.

    Article  ADS  Google Scholar 

  • Siegmund, O. H. W., et al.: 1994, ‘Delay Line Detectors for the UVCS and SUMER Instruments on the SOHO Satellite’, Proc. SPIE 2280 89–100.

    Article  ADS  Google Scholar 

  • Stock, J. M., Siegmund, O. H. W., Hull, J. S., Kromer, K. E., Jelinsky, S. R., Heetderks, H. D., Lampton, M. L. and Mende, S. B.: 1998, ‘Cross Delay Line MicroChannel Plate Detectors for the Spectrographic Imager on the IMAGE Satellite’, Proc. SPIE 3445, 407–414.

    Article  ADS  Google Scholar 

  • Strickland, D. J. and Anderson, D. E., Jr.: 1983, ‘Radiation Transport Effects on the OI 1356-AA Limb Intensity Profile in the Dayglow’, J. Geophys. Res. 88, 9260–9264.

    Article  ADS  Google Scholar 

  • Strickland, D. J., Jasperse, J. R. and Whalen, J. A.: 1983, ‘Dependence of Auroral FUV Emissions on the Incident Electron Spectrum and Neutral Atmosphere’, J. Geophys. Res. 88, 8051–8062.

    Article  ADS  Google Scholar 

  • Strickland, D. J., Danielle, R. E., Jr., Jasperse, J. R. and Basu, B.: 1993, ‘Transport-Theoretic Model for the Electron-Proton-Hydrogen Atom Aurora: 2. Model Results’, J. Geophys. Res. 98, 21533–21548.

    Article  ADS  Google Scholar 

  • Torr, M. R., Torr, D. G., Zukic, M., Johnson, R. B., Ajello, J., Banks, P., Clark, K., Cole, K., Keffer, C., Parks, G., Tsurantani, B. and Spann, J.: 1995, ‘A Far Ultraviolet Imager for the International Solar-Terrestrial Physics Mission’, Space Sci. Rev. 71, 329.

    Article  ADS  Google Scholar 

  • Williams, D. J.: 1987, ‘Ring Current and Radiation Belts’, Rev. Geophys. 25, 570–578.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mende, S.B. et al. (2000). Far Ultraviolet Imaging from the Image Spacecraft. 3. Spectral Imaging of Lyman-∝ and OI 135.6 nm. In: Burch, J.L. (eds) The Image Mission. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4233-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4233-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5837-7

  • Online ISBN: 978-94-011-4233-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics