Skip to main content

Nonlinear Wave Motion: Complexity and Simplicity Revisited

  • Conference paper
IUTAM / IFToMM Symposium on Synthesis of Nonlinear Dynamical Systems

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 73))

  • 220 Accesses

Abstract

The concepts of the theory of nonlinear waves are briefly analyzed. Two examples are given characterizing the nonlinear effects in wave propagation. The first deals with short-living solitary waves in a dispersive medium and the second with interaction of two-dimensional nonlinear waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Engelbrecht, J.: Nonlinear Wave Dynamics: Complexity and Simplicity, Kluwer Acad. Publ., Dordrecht, 1997.

    MATH  Google Scholar 

  2. Zabusky, N.J.: Acta Appl. Math. 39 (1995), 159–172.

    Article  MathSciNet  MATH  Google Scholar 

  3. Jeffrey, A., and Engelbrecht, J.: (eds) Nonlinear Waves in Solids, Springer, Wien et al., 1994.

    MATH  Google Scholar 

  4. Engelbrecht, J.: Shock and Vibr. 2 (1995), 173–190.

    Google Scholar 

  5. Engelbrecht, J., and Braun, M.: Appl. Mech. Rev. 51 (1998), 475–488.

    Article  Google Scholar 

  6. Christov, C.I., Maugin, G.A., and Velarde, M.G.:Phys. Rev. 54 (1996), 3621–3638.

    Google Scholar 

  7. Salupere, A., Maugin, G.A., and Engelbrecht, J.: Proc. Estonian Acad. Sci. Phys. Math. 46 (1997), 1/2, 118–127.

    MathSciNet  MATH  Google Scholar 

  8. Naumkin, P.I., and Shishmarev, I.A.: Nonlinear Nonlocal Equation in the Theory of Waves. AMS, Providence, 1994.

    Google Scholar 

  9. Maugin, G.A., Collet, B., Dronot, R., and Pouget J.: Nonlinear Electromechanical Couplings. J.Wiley, Chicester et al., 1992.

    Google Scholar 

  10. Lebon, G., Jou, D., and Casas-Vazquez J.: Contemporary Physics 33 (1992), 41–51.

    Article  Google Scholar 

  11. Maugin, G.A.: J. Non-Equilib. Thermodyn. 15 (1990), 173–192.

    Article  Google Scholar 

  12. Whitham G.B.: Linear and Nonlinear Waves. J. Wiley, New York et al., 1974.

    MATH  Google Scholar 

  13. Engelbrecht, J., Pastrone, F., and Cermelli, P.: Wave hierarchy in microstructured solids. In G.A.Maugin (ed.) Geometry, Mechanics, Microstructure. Hermann Publ., Paris (to be published in 1998).

    Google Scholar 

  14. Stronge, W.: Proc. Roy Soc. London A 409 (1987), 199–208.

    Article  Google Scholar 

  15. Kyriakides, S.: Adv. Appl. Mech. 30 (1993), 67–189.

    Article  Google Scholar 

  16. Zabusky, N.J., and Kruskal, M.D.: Phys. Rev. Lett. 15 (1965), 240–243.

    Article  MATH  Google Scholar 

  17. Abe, K., and Abe, T.: Phys.,Fluids 22 (1979), 1644–1646.

    Article  MathSciNet  MATH  Google Scholar 

  18. Salupere, A., Maugin, G.A., Engelbrecht, J., and Kalda J.: Wave Motion 23 (1996), 49–66.

    Article  MathSciNet  MATH  Google Scholar 

  19. Grammaticos, B., Ramani, A., and Hietarinta, J.: J. Math. Phys. 31(11) (1990), 2572–2578.

    Article  MathSciNet  MATH  Google Scholar 

  20. Hirota, R.: Direct methods in soliton theory. In R.K. Bullough and P.J. Gaudrey, (eds), Solitons. Springer, Berlin et al. (1980), 157–176.

    Chapter  Google Scholar 

  21. Freeman, N.C.: Adv. in Appl. Mech. 20 (1980), 1–37.

    Article  MathSciNet  MATH  Google Scholar 

  22. Peterson, P.: I. Interaction of KdV-type solitons in terms of phase variables. Interaction soliton. Research Report 185/98, Inst. of Cybernetics, April 1998.

    Google Scholar 

  23. Peterson, P.: II. Interaction of KdV-type solitons in terms of real space and time variables. Research Report 186/98, Inst. of Cybernetics, May 1998.

    Google Scholar 

  24. Miles, J.W.: J. Fluid Mech. 79(1) (1977), 171–179.

    Article  MathSciNet  MATH  Google Scholar 

  25. Johnson, R.S.: J. Fluid Mech 323 (1996), 65–78.

    Article  MathSciNet  MATH  Google Scholar 

  26. Hammack, J., McCallister, D., Scheffner, N., and Segur, H.: J. Fluid Mech 285 (1995), 95–122.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Engelbrecht, J., Salupere, A., Peterson, P. (2000). Nonlinear Wave Motion: Complexity and Simplicity Revisited. In: Lavendelis, E., Zakrzhevsky, M. (eds) IUTAM / IFToMM Symposium on Synthesis of Nonlinear Dynamical Systems. Solid Mechanics and its Applications, vol 73. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4229-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4229-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5836-0

  • Online ISBN: 978-94-011-4229-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics