Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 545))

Abstract

The last few years have seen a large number of simulation studies of liquid crystal systems. Two general methods have been popular. In the first approach, simplified molecular potentials have been used. These seek to approximate the gross features of mesogenic interactions (e.g molecular shape anisotropy, molecular dipole moments etc.) by single site potentials [16]. Such models have been highly successful in predicting the formation of a number of liquid crystal phases, and allowing the development of techniques for the calculation of key bulk properties, such as transport coefficients [7] and elastic constants [8]. In a second simulation approach, atomistic models have been used [926]. These seek to represent molecular structure as faithfully as possible by representing nonbonded interactions at the atomic level and accurately representing internal molecular motion. This approach aims to be able to accurately predict mesophase behaviour for real systems based only on a knowledge of molecular structure. The drawback of this method is that it is computationally expensive, and large quantities of computer time must be expended in order to compute the numerous pair interactions in such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, M.P. and Wilson, M.R. (1989) J. Computer-Aided Molec. Design, 3, 335.

    Article  ADS  Google Scholar 

  2. Frenkel, D. and Mulder, B.M. (1984) Phys. Rev. Lett., 52, 287

    Article  ADS  Google Scholar 

  3. Frenkel, D. and Mulder, B.M. (1985) Molec. Phys., 55, 1171.

    Article  ADS  Google Scholar 

  4. Frenkel, D. and Eppenga, R. (1982) Phys. Rev. Lett., 49, 1089.

    Article  ADS  Google Scholar 

  5. Frenkel, D. (1988) J. Phys. Chem., 92, 3280.

    Article  Google Scholar 

  6. McGrother, S.C., Williamson, D.C. and Jackson, G. (1996) J. Chem. Phys., 104, 6755.

    Article  ADS  Google Scholar 

  7. Allen, M.P. (1990) Phys. Rev. Lett., 65, 2881.

    Article  ADS  Google Scholar 

  8. Allen, M.P., Warren, M.A., Wilson, M.R., Sauron, A. and Smith, W. (1996) J. Chem. Phys., 105, 2850.

    Article  ADS  Google Scholar 

  9. Wilson, M.R. and Allen, M.P. (1991) Molec. Cryst. Liq. Cryst., 198, 465.

    Article  Google Scholar 

  10. Wilson, M.R. and Allen, M.P. (1992) Liq. Cryst., 12, 157.

    Article  Google Scholar 

  11. Wilson, M.R. (1996) J. Molec. Liq., 68, 23.

    Article  Google Scholar 

  12. Komolkin, A.V., Molchanov, Yu.V. and Yakutseni, P.P. (1989) Liq. Cryst., 6, 39.

    Article  Google Scholar 

  13. Picken, S.J., van Gunsteren, W.F., van Duijnen, P.Th. and de Jeu, W.H. (1989) Liq. Cryst., 6, 357.

    Article  Google Scholar 

  14. Jung, B. and Schürmann, B.L. (1990) Molec. Cryst. Liq. Cryst., 185, 141.

    Google Scholar 

  15. Ono, I. and Kondo, S. (1991) Molec. Cryst Liq. Cryst., 8, 69.

    Google Scholar 

  16. Ono, I. and Kondo, S. (1992) Bull. Chem. Soc. Jpn., 65, 1057.

    Article  Google Scholar 

  17. Ono, I. and Kondo, S. (1993) Bull. Chem. Soc. Jpn., 66, 633.

    Article  Google Scholar 

  18. Krömer, G., Paschek, D. and Geiger, A. (1993) Ber. Bunsenges Phys. Chem., 97, 1188.

    Article  Google Scholar 

  19. Huth, J., Mosell, T., Nicklas, K., Sariban, A. and Brickmann, J. (1994) J. Phys. Chem., 98, 768.

    Article  Google Scholar 

  20. Cross, C.W. and Fung, B. (1994) J. Chem. Phys., 101, 6839.

    Article  ADS  Google Scholar 

  21. Yoneya, M. and Berendsen, H.J.C. (1994) J. Phys. Soc. Jpn., 63, 1025.

    Article  ADS  Google Scholar 

  22. Kolmolkin, A.V., Laaksonen, A. and Maliniak, A. (1994) J. Chem. Phys., 101, 4103.

    Article  ADS  Google Scholar 

  23. Yakovenko, S.Y., Muravski, A.A., Kromer, G., and Geiger, A. (1995) Molec. Phys., 86, 1099.

    Article  ADS  Google Scholar 

  24. Yakovenko, S.Y., Kromer, G., and Geiger, A. (1996) Molec. Phys., 275, 91.

    Google Scholar 

  25. Hauptmann, S., Mosell, T., Reiling, S. and Brickmann, J. (1996) Chem. Phys., 208, 57.

    Article  Google Scholar 

  26. McBride, C., Wilson, M.R. and Howard, J.A.K. (1998) Molec. Phys., 93, 955.

    Article  ADS  Google Scholar 

  27. Wilson, M.R. (1998) Molecular modelling, in Handbook of Liquid Crystals. Demus, D., Goodby, J., Gray, G.W., Spiess, H.-W. and Vill, V. (eds.), volume 1, chapter III.3, Wiley-VCH, Weinheim.

    Google Scholar 

  28. Wilson, M.R. Atomistic simulations of liquid crystals, in Structure and Bonding. Liquid Crystals. Mingos, M. (ed.), Springer-Verlag, Heidelberg, in press.

    Google Scholar 

  29. Wilson, M.R. (1997) J. Chem. Phys., 107, 8654.

    ADS  Google Scholar 

  30. GBMOL (1996) A replicated data molecular dynamics program to simulate combinations of Gay-Berne and Lennard-Jones sites. Author: Wilson, M.R. University of Durham.

    Google Scholar 

  31. Allen, M.P. and Tildesley, D.J. (1987) Computer Simulation of Liquids. Chapter 3. Oxford University Press, Oxford.

    MATH  Google Scholar 

  32. McBride, C. and Wilson, M.R. to be published.

    Google Scholar 

  33. Lyulin, A.V., Al Barwani, M.S., Allen, M.P., Wilson, M.R., Neelov, I. and Allsopp, N.K. (1998) Macromolecules, 31, 4626.

    Article  ADS  Google Scholar 

  34. de Miguel, E., Rull, L.F., Chalam, M.K. and Gubbins, K.E. (1991) Molec. Phys., 74, 405.

    Article  ADS  Google Scholar 

  35. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz Jr., K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A. (1995) J. Am. Chem. Soc, 117, 5179.

    Article  Google Scholar 

  36. Allinger, N.L., Yuh, Y.H. and Lii, J. (1989) J. Am. Chem. Soc, 111, 8551.

    Article  Google Scholar 

  37. Jorgensen, W.L., Maxwell, D.S. and Tirado-Rives, J. (1996) J. Am. Chem. Soc, 118, 11225.

    Article  Google Scholar 

  38. Jorgensen, W.L. and McDonald, N.A. (1998) Theochem — J. Molec. Structure, 424, 145.

    Article  Google Scholar 

  39. Halgren, T.A. (1996) J. Comput. Chem., 17, 490.

    Article  Google Scholar 

  40. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S. and Weiner, P. (1984) J. Am. Chem. Soc, 106, 765.

    Article  Google Scholar 

  41. Karplus, M. and Gelin, B.R. (1979) Biochemistry, 18, 1256.

    Article  Google Scholar 

  42. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M. (1983) J. Comput. Chem., 4, 187.

    Article  Google Scholar 

  43. Smith, G.D. and Jaffe, R.L. (1996) J. Phys. Chem., 100, 9624.

    Article  Google Scholar 

  44. Adam, C.J., Clark, S.J., Wilson, M.R., Ackland, G.J. and Crain, J. (1998) Molec. Phys., 93, 947.

    Article  ADS  Google Scholar 

  45. Allen, M.P. (1993) Phys. Rev. E, 47, 4611.

    Article  ADS  Google Scholar 

  46. Cook, M.J. and Wilson, M.R. to be published.

    Google Scholar 

  47. Gay, J.G. and Berne, B.J. (1981) J. Chem. Phys., 74, 3316.

    Article  ADS  Google Scholar 

  48. Allinger, N.L. (1977) J. Am. Chem. Soc, 99, 8127.

    Article  Google Scholar 

  49. Allen, M.P. and Masters, A. (1993) Molec. Phys., 79, 277.

    Article  ADS  Google Scholar 

  50. Denti, T.Z.M., Beutler, T.C., van Gunsteren, W.F. and Diederich, F.J. (1996) J. Phys. Chem., 100, 4256.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wilson, M.R., Cook, M.J., McBride, C. (2000). Atomistic Modelling of Liquid Crystal Phases. In: Pasini, P., Zannoni, C. (eds) Advances in the Computer Simulatons of Liquid Crystals. NATO Science Series, vol 545. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4225-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4225-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6099-5

  • Online ISBN: 978-94-011-4225-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics