Skip to main content

Diversity of bacterial communities in Adirondack lakes: do species assemblages reflect lake water chemistry?

  • Chapter
Molecular Ecology of Aquatic Communities

Part of the book series: Developments in Hydrobiology ((DIHY,volume 138))

Abstract

Bacterial diversity was examined in six lakes located in the Adirondack Mountains of upstate New York. This region receives significant anthropogenic atmospheric inputs of strong mineral acids resulting in decreases in pH and acid neutralizing capacity (ANC) in many of the lakes. Statistical methods including correlation and cluster analysis were used to determine if there were significant associations between phylotypes and water chemistry variables. Direct effects of acidification, pH and ANC, were not significantly correlated with any of the broadest level taxonomic classifications (equivalent to class or order), but may be correlated with subgroups within these classifications. Indirect influences of acidification were suggested by significant correlations of phylotypes with aluminum chemistry. There were positive correlations between the relative abundance of the γ subdivision of the Proteobacteria and total aluminum (r 2= 0.70, p= 0.04), monomeric aluminum (r 2= 0.78, p= 0.02) and non-labile aluminum (r 2= 0.92, p= 0.002). The ACK1 clade of the β-Proteobacteria (Adirondack clade 1) was correlated with monomeric aluminum (r 2- 0.71, p=0.03) and non-labile aluminum (r 2= 0.73, p= 0.03). Significant negative correlations were found between the relative abundance of the Cytophaga-Flexibacter-Bacteroides phylum and total aluminum (r 2= 0.74, p= 0.03), and the High G+C subdivision of the Gram Positive phylum with total aluminum (r 2= 0.70, p= 0.04). Dissolved organic carbon (DOC) concentrations may also influence bacteria through amelioration of aluminum toxicity and as a carbon source. There were significant positive correlations between DOC and the relative abundance of the γ (r 2= 0.66, p= 0.05) and β (r 2= 0.78, p=0.02) subdivisions and the ACK1 clade r 2= 0.84, p= 0.01). Additional significant correlations were also noted between specific phylotypes and certain macro- and micro-nutrients. The results of this study indicate that water chemistry can have a direct influence on bacterial lake assemblages and that in acid stressed lakes aluminum chemistry and DOC concentrations may play a particularly important role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bahr, M., J. E. Hobbie & M. L. Sogin, 1996. Bacterial diversity in an arctic lake: a freshwater SAR 11 cluster. Aquat. microb. Ecol. 11:271–277.

    Article  Google Scholar 

  • Baker, J. P. & C. L. Schofield, 1982. Aluminum toxicity to fish in acidic waters. Wat. Air Soil Pollut. 18: 289–309.

    Article  CAS  Google Scholar 

  • Baker, J. P., S. A. Gherini, S. W. Christensen, J. Gallagher, R. K. Munson, R. M. Newton, K. H. Reckhow & C. L. Schofield, 1990a. Adirondack Lakes Survey: an interpretive analysis of fish communities and water chemistry, 1984-87. Adirondack Lakes Survey Corporation, Ray Brook, NY, U.S.A.

    Book  Google Scholar 

  • Baker, J. P., D. P. Bernard, S. W. Christensen, M. J. Sale, J. Freda, K. Heltcher, D. Marmorek, L. Rowe, P. Scanion, G. Suter, W. Warren-Hicks & P. Welbourn, 1990b. Biological Effects of Changes in Surface Water Acid-Base Chemistry. NAPAP Report 13. In National Acid Precipitation Assessment Program, Acidic Deposition: State of Science and Technology. Volume II.

    Google Scholar 

  • Borneman, J., P. W. Skroch, K. M. O’Sullivan, J. A. Palus, N. G. Rumjanek, J. L. Jansen, J. Nienhuis & E. W. Triplett, 1996. Molecular microbial diversity of an agricultural soil in Wisconsin. Appl. envir. Microbiol. 62: 1935–1943.

    CAS  Google Scholar 

  • Chen, W. H. & P. J. Wangersky, 1996. Rates of microbial degradation of dissolved organic carbon from phytoplankton cultures. J. Plankton Res. 18: 1521–1533.

    Article  Google Scholar 

  • Corstjens, P. L. A. M., J. P. M. De Vrind, P. Westbroek & E. W. De Vrind-De Jong, 1992. Enzymatic Iron Oxidation by Leptothrix discophora: identification of an iron-oxidizing bacteria. Appl. envir. Microbiol. 58: 450–454.

    CAS  Google Scholar 

  • Cronan, S. S. & C. L. Schofield, 1979. Aluminum leaching response to acid precipitation: effects on high-elevation watersheds in the northeast. Science 204: 304–306.

    Article  PubMed  CAS  Google Scholar 

  • Davis, W. B., M. J. McCauley & B. R. Byers, 1971. Iron requirements and aluminum sensitivity of hydroxamic requiring strain of Bacillus megaterium. J. Bact. 105: 589–594.

    PubMed  CAS  Google Scholar 

  • DeLong, E. F., 1992. Archaea in Coastal Marine Environments. Proc. natn. Acad. Sci. U.S.A. 89: 5685–5689.

    Article  CAS  Google Scholar 

  • Diels, L., Q. Dong, D. van der Lelie, W. Baeyens & M. Mergeay, 1995. J. Ind. Microbiol. 14: 142–153.

    CAS  Google Scholar 

  • Ehrlich, H. L., 1990. Geomicrobiology. 2nd edn. New York City: Marcel Dekker, Inc. 646 pp.

    Google Scholar 

  • Ekendahl, S., J. Arlinger, F. Stahl & K. Pedersen, 1994. Characterization of attached bacterial populations in deep granitic groundwater from the Stripa research mine by 16S rRNA gene sequencing and scanning electron microscopy. Microbiology 140: 1575–1583.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J., 1993. PHYLIP-phylogeny inference package (version 3.5c). Department of Genetics, University of Washington, Seattle. Distributed by the author.

    Google Scholar 

  • Freirenordi, C. S. & A. A. H. Vieira, 1996. Utilization of extracellular polysaccharides from Ankistrodesmus Densus (Chloro-phyceae) by heterotrophic bacteria. Revista De Microbiologia 27: 27–32.

    CAS  Google Scholar 

  • Fuhrman, J. A., K. McCallum & A. A. Davis, 1993 Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific oceans. Appl. envir. Microbiol. 59: 1294–1302.

    CAS  Google Scholar 

  • Giovannoni, S. J., E. J. DeLong, T. M. Schmidt & N. R. Pace, 1990. Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton. Appl. envir. Microbiol. 56: 2572–2575.

    CAS  Google Scholar 

  • Giovannoni, S. J., M. S. Rappe, K. L. Vergin & N. L. Adair, 1996. 16S rRNA genes reveal stratified open-ocean bacterioplankton populations related to the green non-sulfur bacteria. Proc. natn. Acad. Sci. U.S.A. 93: 7979–7984.

    Article  CAS  Google Scholar 

  • Gray, J. P. & R. P. Herwig, 1996. Phylogenetic analysis of the bacterial communities in marine sediments. Appl. envir. Microbiol. 62: 4049–4059.

    CAS  Google Scholar 

  • Guida, L., Z. Saidi, M. N. Hughes & R. K. Poole, 1991. Aluminum toxicity and binding to Escherichia coli. Arch. Mikrobiol. 156: 507–512.

    CAS  Google Scholar 

  • Havens, K. E. & J. Decosta, 1987a. The role of aluminum contamination in determining phytoplankton and Zooplankton responses to acidification. Wat. Air Soil Pollut. 33: 277–293.

    Article  CAS  Google Scholar 

  • Havens, K. E. & J. DeCosta, 1987b. Freshwater plankton community succession during experimental acidification. Arch. Hy-drobiol. 111: 37–65.

    Google Scholar 

  • Hiorns, W. D., B. A. Methé, S. A. Nierzwicki-Bauer & J. P. Zehr, 1997 Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences. Appl. envir. Microbiol. 63: 2957–2960.

    CAS  Google Scholar 

  • Knowles, R., 1982. Denitrification. Microbiol. Rev. 46: 43–70.

    PubMed  CAS  Google Scholar 

  • Lee, Y. A., M. Hendson, N. J. Panopoulos & M. N. Schroth, 1994. Molecular cloning, chromosomal mapping and sequence analysis of copper resistance genes from Xanthamonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase. J. Bact. 176: 173–188.

    CAS  Google Scholar 

  • Lunsdorf, H., K. Brummer, K. N. Timmis & I. Wagner-Dobler, 1997. Metal selectivity of in situ microcolonies in biofilms of the Elbe River. J. Bact. 179: 31–40.

    PubMed  CAS  Google Scholar 

  • Maidak, B. L., G. J. Olsen, N. Larsen, R. Overbeek, M. J. Mc-Caughey & C. R. Woese, 1996. The Ribosomal Database Project (RDP). Nucleic Acids Res. 24: 82–85.

    Article  PubMed  CAS  Google Scholar 

  • Methé B. A., W. D. Hiorns & J. P. Zehr, 1998. Contrasts between marine and freshwater bacterial community composition: analyses of communities in Lake George, NY and six other Adirondack lakes. Limnol. Oceanogr. 43: 368–374.

    Article  Google Scholar 

  • Mills, S. D., C. A. Jasalavich & D. A. Cooksey, 1993. A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syr-ingae. J. Bact. 175: 1656–1664.

    PubMed  CAS  Google Scholar 

  • Momen, B. & J. P. Zehr, 1998. Watershed classification by discriminant analyses of lakewater-chemistry and terrestrial characteristics. Ecol. Appl. 8: 497–507.

    Article  Google Scholar 

  • Moyer, C. L., F. C. Dobbs & D. M. Karl, 1995. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. envir. Microbiol. 1995. 61: 1555–1562.

    CAS  Google Scholar 

  • Mullins, T. D., T. B. Britschgi, R. L. Krest & S. J. Giovannoni, 1995 Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol. Oceanogr. 40: 148–158.

    Article  CAS  Google Scholar 

  • Pace, N. R., 1997. A molecular view of microbial diversity and the biosphere. Science 276: 734–740.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, R. H., R. A. Bourbonniere, G. L. Lacroix, D. J. Martin-Robichaud, P. Takats & G. Bran, 1989. Responses of Atlantic salmon (Salmo salar) alevins to dissolved organic carbon and dissolved aluminum at low pH. Wat. Air Soil Pollut. 46: 399–4

    CAS  Google Scholar 

  • Pina, R. G. & C. Cervantes, 1996. Microbial interactions with aluminum. BioMetals 9: 311–316.

    Article  PubMed  CAS  Google Scholar 

  • Ramsing, N. B., H. Fossing, T. G. Ferdelman, F. Andersen & B. Thamdrup, 1996. Distribution of bacterial populations in a stratified fjord (Manager Fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Appl. envir. Microbiol. 62: 1391–1404.

    CAS  Google Scholar 

  • Raskin, L., B. E. Rittmann & D. A. Stahl, 1996. Competition and coexistence of sulfate-reducing and methanogenic populations in anaerobic biofilms. Appl. envir. Microbiol. 62:3847–3857.

    CAS  Google Scholar 

  • Sadler, K. & S. Lynam, 1987. Some effects on the growth of brown trout from exposure to aluminum at different pH levels. J. Fish. Biol. 31:209–219.

    Article  CAS  Google Scholar 

  • Sanger, F., S. Nicklen & A. R. Coulsen, 1977. DNA sequencing with chain termination inhibitors. Proc. natn. Acad. Sci. U. S. A. 74: 5463–5467.

    Article  CAS  Google Scholar 

  • Scharf, R., R. Mamet, Y. Zimmels, S. Kimchie & N. Schoenfeld, 1994. Evidence for the interference of aluminum with bacterial porphyrin biosynthesis. BioMetals 7: 135–141.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S. W., R. Overbeek, C. R. Woese, W. Gilbert & P. M. Gil-levet, 1994. The genetic data environment an expandable GUI for multiple sequence analysis. CABIOS 10: 671–675.

    PubMed  CAS  Google Scholar 

  • Stackebrandt, E., W. Liesack & B. M. Goebel, 1993. Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB Journal 7: 232–236.

    PubMed  CAS  Google Scholar 

  • Van de Peer, Y. & R. De Wachter, 1994. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Applic. Biosci. 10: 569–570.

    Google Scholar 

  • Van der Lelie, D., T. Schwuchow, U. Schwidetzky & S. Wuertz, 1997. Two-component regulatory system involved in transcrip-tional control of heavy-metal homeostasis in Alcaligenes eutro-phus. Molecular Microbiol. 23: 493–5

    Article  Google Scholar 

  • Wagner, M., R. Erhart, W. Manz, R. Amann, H. Lemmer, D. Wedi & K.-H. Schleifer, 1994. Development of an rRNA-targeted oli-gonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl. envir. Microbiol. 60: 792–800.

    CAS  Google Scholar 

  • Weisburg, W. G., S. M. Bams, D. A. Pelletier & D. J. Lane, 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bact. 173: 697–703.

    PubMed  CAS  Google Scholar 

  • Weiss, P., B. Schweitzer, R. Amann & M. Simon, 1996. Identification in situ and dynamics of bacteia on limnetic organic aggregates (lake snow). Appl. envir. Microbiol. 62: 1998–2005.

    CAS  Google Scholar 

  • Zwart, G., W. D. Hiorns, B. A. Methé, M. P. Agterveld, R. Huismans, S. L. Nold, J. P. Zehr & H. J. Laanbroek, 1998. Near-identical 165 rRNA sequences recovered from lakes in North America and Europe indicate the existence of clades of freshwater bacteria with global distribution. Syst. appl. Microbiol. 21: 546–556.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Zehr .

Editor information

J. P. Zehr M. A. Voytek

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Methé, B.A., Zehr, J.P. (1999). Diversity of bacterial communities in Adirondack lakes: do species assemblages reflect lake water chemistry?. In: Zehr, J.P., Voytek, M.A. (eds) Molecular Ecology of Aquatic Communities. Developments in Hydrobiology, vol 138. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4201-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4201-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5827-8

  • Online ISBN: 978-94-011-4201-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics