Skip to main content

Molecular ecology of aquatic communities: reflections and future directions

  • Chapter

Part of the book series: Developments in Hydrobiology ((DIHY,volume 138))

Abstract

During the 1980s, many new molecular biology techniques were developed, providing new capabilities for studying the genetics and activities of organisms. Biologists and ecologists saw the promise that these techniques held for studying different aspects of organisms, both in culture and in the natural environment. In less than a decade, these techniques were adopted by a large number of researchers studying many types of organisms in diverse environments. Much of the molecular-level information acquired has been used to address questions of evolution, biogeography, population structure and biodiversity. At this juncture, molecular ecologists are poised to contribute to the study of the fundamental characteristics underlying aquatic community structure. The goal of this overview is to assess where we have been, where we are now and what the future holds for revealing the basis of community structure and function with molecular-level information.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amann, R. I., W. Ludwig & K.-H. Schleifer, 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microb. Rev. 59: 143–169

    CAS  Google Scholar 

  • Ashelford, K. E., J. C. Fry, M. J. Day, K. E. Hill, M. A. Learner, J. R. Marchesi, C. D. Perkins & A. J. Weightman, 1997. Using microcosms to study gene transfer in aquatic habitats. FEMS Microb. Ecol. 23: 81–94.

    Article  CAS  Google Scholar 

  • Azam, F., 1998. Microbial control of oceanic carbon flux: The plot thickens. Science 280: 694–696.

    Article  CAS  Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray & L. A. T. F. Meyer-Reil, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Progr. Ser. 10: 257–263

    Article  Google Scholar 

  • Buckley, L., E. Caldarone & T. L. Ong, 1999. RNA:DNA ratio and other nucleic acid-based indicators for growth and condition of marine fishes. Hydrobiologia 401 (Dev. Hydrobiol. 138): 269–281.

    Article  Google Scholar 

  • Bucklin, A., 1995. Molecular markers of Zooplankton dispersion in the ocean. Reviews in Geophysics 33: 1165–1175.

    Article  Google Scholar 

  • Bucklin, A., M. Guarnieri, R. S. Hill, A. M. Bentley & S. Kaartvedt, 1999. Taxonomic and systematic assessment of planktonic cope-pods using mitochondrial COI sequence variation and competitive, species-specific PCR. Hydrobiologia 401 (Dev. Hydrobiol. 138): 241–257.

    Article  Google Scholar 

  • Burton, R. S., 1996. Molecular tools in marine ecology. J. exp. mar. Biol. Ecol. 200: 85–101.

    Article  CAS  Google Scholar 

  • Caron, D. A., R. J. Gast, E. L. Lim & M. R. Dennett, 1999. Protistan community structure: molecular approaches for answering ecological questions. Hydrobiologia 401 (Dev. Hydrobiol. 138): 217–229.

    Article  Google Scholar 

  • Carpenter, S. R. & J. F. Kitchell, 1988. Consumer control of lake productivity. Bioscience 38: 764–769.

    Article  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634639.

    Google Scholar 

  • Cary, S. C. & S. J. Giovannoni, 1993. Transovarial inheritance of endosymbiotic bacteria in clams inhabiting deep-sea hydrothermal vents and cold seeps. Proc. natn. Acad. Sci. U. S. A. 90: 5695–5699.

    Article  CAS  Google Scholar 

  • Cary, S. C., W. Warren, E. Anderson & S. J. Giovannoni, 1993. Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques. Mo-lec. mar. Biol. Biotechnol. 2: 51–62.

    CAS  Google Scholar 

  • Chen, C. Y, K. B. Sillett, C. L. Folt, S. L. Whittemore & A. Bar-chowsky, 1999a. Molecular and demographic measures of arsenic stress in Daphnia pulex. Hydrobiologia 401 (Dev. Hydrobiol. 138): 229–238.

    Article  CAS  Google Scholar 

  • Chen, F., W. A. Dustman & R. E. Hodson, 1999b. Microscopic detection of the toluene dioxygenase gene and its expression inside bacterial cells in seawater using prokaryotic in situ PCR. Hydrobiologia 401 (Dev. Hydrobiol. 138): 231–240.

    Google Scholar 

  • Coffroth, M. A. & H. R. Lasker, 1998. Population structure of a conal gorgonian coral — the interplay between clonal reproduction and disturbance. Evolution 52: 379–393.

    Article  Google Scholar 

  • Collier, J. L. & L. Campbell, 1999. Flow cytometry in molecular aquatic ecology. Hydrobiologia 401 (Dev. Hydrobiol. 138): 34–54.

    Article  Google Scholar 

  • Connell, J. H., 1961. Effects of competition, prédation by Thais lapillus and other factors on natural populations of barnacles. Ecol. Monogr. 31: 61–104.

    Article  Google Scholar 

  • Cooksey, K. E., 1998. Molecular Approaches to the Study of the Ocean. Chapman and Hall, London, 549 pp.

    Google Scholar 

  • DeLong, E. F., 1998. Molecular phylogenetics: new perspective on the ecology, evolution and biodiversity of marine organisms. In Cooksey K. E. (ed.), Molecular Approaches to the Study of the Ocean. Chapman and Hall, London: 1–28.

    Google Scholar 

  • DiChristina, T. J. & E. F. DeLong, 1993. Design and application of rRNA-targeted oligonucleotide probes for the dissimilatory iron-and manganese-reducing bacterium Shewanella putrefaciens. Appl. envir. Microbiol. 59: 4152–4160.

    CAS  Google Scholar 

  • Distel, D. L. & A. P. Wood, 1992. Characterization of the gill symbiont of Thyasira flexuosa (Thyasiridae: Bivalvia) by use of polymerase chain reaction and 16S rRNA sequence analysis. J. Bact. 174: 6317–6320.

    PubMed  CAS  Google Scholar 

  • Falkowski, P. G. & J. LaRoche, 1991. Molecular biology in studies of ocean processes. Int. Rev. Cytology. 128: 261–303

    Article  CAS  Google Scholar 

  • Ferrari, V. C. & J. T. Hollibaugh, 1999. Distribution of microbial assemblages in the central arctic ocean basin studied by PCR/DGGE: analysis of a large data set. Hydrobiologia 401 (Dev. Hydrobiol. 138): 55–68.

    Article  CAS  Google Scholar 

  • France, S. C. & T. D. Kocher, 1996. Geographic and bathymeteric patterns of mitochondrial 16S rRNA sequence divergence among deepsea amphipods, Eurythenes gryllus. Mar. Biol. 126: 633–643.

    CAS  Google Scholar 

  • Geider, R. J., J. LaRoche, R. M. Greene & M. Olaizola, 1993. Response of the photosynthetic apparatus of Phaeodactylum tricornutum (bacillariophyceae) to nitrate, phosphate or iron starvation. J. Phycol. 29: 755–766.

    Article  CAS  Google Scholar 

  • Geller, J. B., 1998. Molecular studies of marine invertebrate biodiversity: status and prospects. In K. E. Cooksey (ed.), Molecular Approaches to the Study of the Ocean. Chapman and Hall, London: 359–376.

    Google Scholar 

  • Gonzalez, J. M., R. E. Hodson & M. A. Moran, 1999. Bacterial populations in replicate marine enrichment cultures: assessing variability in abundance using 16S rRNA-based probes. Hydrobiologia 401 (Dev. Hydrobiol. 138): 69–75.

    Article  CAS  Google Scholar 

  • Gordon, D. A. & S. J. Giovannoni, 1996. Detection of stratified mi-crobial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific Oceans. Appl. envir. Microbiol. 62: 1171–1177.

    CAS  Google Scholar 

  • Graves, J. E., 1998. Molecular insights into the population structures of cosmopolitan marine fishes. J. Heredity 89: 427–437.

    Article  CAS  Google Scholar 

  • Gray, N. D. & I. M. Head, 1999. New insights on old bacteria: diversity and function of morphologically conspicuous sulfur bacteria in aquatic systems. Hydrobiologia 401 (Dev. Hydrobiol. 138): 97–112.

    Article  CAS  Google Scholar 

  • Grimm, N. B., 1995. Why link species and ecosystems: A perspective from ecosystem ecology. In Jones C. G. & J. H. Lawton (ed.), Linking Species and Ecosystems. Chapman and Hall, New York: 5–15.

    Chapter  Google Scholar 

  • Hackstein, J. H. P., 1997. Eukaryotic molecular biodiversity: systematic approaches for the assessment of symbiotic associations. Antonie Van Leeuwenhoek 72: 63–76.

    Article  PubMed  CAS  Google Scholar 

  • Haig, S. M., 1998. Molecular contributions to conservation. Ecology 7: 413–425.

    Article  Google Scholar 

  • Head, I. M., J. R. Saunders & R. W. Pickup, 1998. Micro-bial evolution, diversity and ecology — A decade of ribosomal RNA analysis of uncultivated microorganisms. Microbiol. Ecol. 35:1–21.

    Article  CAS  Google Scholar 

  • Hutchinson, G. E., 1957. A treatise on limnology. I. Geography, physics and chemistry. John Wiley and Sons, Inc., New York, 1015 pp.

    Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of the plankton. Am. Nat. 95: 137–145.

    Article  Google Scholar 

  • Jiang, S. C. P. J. H., 1998. Gene transfer by transduction in the marine environment. Appl. envir. Microbiol. 64: 2780–2787.

    CAS  Google Scholar 

  • Joint, I., 1995. Molecular Ecology of Aquatic Microbes. Springer, Berlin, 415 pp.

    Google Scholar 

  • Jones, C. G. & J. H. Lawton, 1995. Linking Species and Ecosystems. Chapman and Hall, New York, 387 pp.

    Book  Google Scholar 

  • Kane, M. D., L. K. Poulsen & D. A. Stahl, 1993. Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl. envir. Microbiol. 59: 682–686.

    CAS  Google Scholar 

  • Karouna, N. K. & J. P. Zehr, 1999. Effects of stress on freshwater invertebrate populations of Chironomus tentans: assaying sublethal stress using heat shock protein 70 (HSP-70) expression. Hydrobiologia 401 (Dev. Hydrobiol. 138): 259–268.

    Google Scholar 

  • Kramer, J. G. & F. L. Singleton, 1993. Measurement of rRNA synthesis variations in natural communities of microorganisms on the southeastern U. S. continental shelf. Appl. envir. Microbiol. 59:2430–2436.

    CAS  Google Scholar 

  • Langworthy, D. E., R. D. Stapleton, G. S. Sayler & R. H. Find-lay, 1998. Genotypic and phenotypic responses of a riverine microbial community to polycyclic aromatic hydrocarbon contamination. Appl. envir. Microbiol. 64: 3422–3428.

    CAS  Google Scholar 

  • LaRoche, J., M. L. McKay & P. Boyd, 1999. Immunological and molecular probes to detect phytoplankton responses to environmental stress in nature. Hydrobiologia 401 (Dev. Hydrobiol. 138): 179–200.

    Google Scholar 

  • LaRoche, J., R. J. Geider, L. M. Graziano, H. Murray & K. Lewis, 1993. Induction of specific proteins in eukaryotic algae grown under iron-, phosphorus-or nitrogen-deficient conditions. J. Phycol. 29: 767–777.

    Article  CAS  Google Scholar 

  • Lin, S. & E. J. Carpenter, 1995. Growth characteristics of marine phytoplankton determined by cell cycle proteins: The cell cycle of Ethmodiscus rex (Bacillariophyceae) in the southwestern North Atlantic Ocean and Caribbean Sea. J. Phycol. 31: 778–785.

    Article  CAS  Google Scholar 

  • Lin, S., J. Chang & E. J. Carpenter, 1995. Growth characteristics of phytoplankton determined by cell cycle proteins: PCNA immunostaining of Dunaliella tertiolecta (Chlorophyceae). J. Phycol. 31: 388–395.

    Article  CAS  Google Scholar 

  • Lindeman, R. L., 1942. The trophodynamic aspect of ecology. Ecology 23: 399–418.

    Article  Google Scholar 

  • Lyons, M. M., P. Aas, J. D. Pakulski, L. Vanwaasbergen, R. V. Miller, D. L. Mitchell & W. H. Jeffrey, 1998. DNA damage induced by ultraviolet radiation in coral-reef microbial communities. Mar. Biol. 130: 537–543.

    Article  CAS  Google Scholar 

  • MacArthur, R. H., 1955. Fluctuations of animal populations and a measure of community stability. Ecology 36: 533–536.

    Article  Google Scholar 

  • May, R. M., 1972. Will a large complex system be stable? Nature 238:413–414.

    Article  PubMed  CAS  Google Scholar 

  • Medlin, L. K., M. Lange, G. L. A. Barker & P. K. Hayes, 1995. Can molecular techniques change our ideas about the species concept? In Joint I. (ed.), Molecular Ecology of Aquatic Microbes. Springer, Berlin: 133–170.

    Google Scholar 

  • Methé, B. A., W. D. Hiorns & J. P. Zehr, 1998. Contrasts between marine and freshwater bacterial community composition: analyses of communities in Lake George, NY and six other Adirondack lakes. Limnol. Oceanogr. 43: 368–374.

    Google Scholar 

  • Methé, B. A. & J. P. Zehr, 1999. Diversity of bacterial communities in Adirondack lakes: do species assemblages reflect lake water chemistry? Hydrobiologia 401 (Dev. Hydrobiol. 138): 77–96.

    Article  Google Scholar 

  • Miller, S. R., C. E. Wingard & R. W. Castenholz, 1998. Effects of visible light and UV radiation on photosynthesis in a population of a hot spring cyanobacterium, a Synechococcus sp., subjected to high-temperature stress. Appl. envir. Microbiol. 64: 3893–3899.

    CAS  Google Scholar 

  • Murray, A. E., J. T. Hollibaugh & C. Orrego, 1996. Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16S rDNA fragments. Appl. envir. Microbiol. 62: 2676–2680.

    CAS  Google Scholar 

  • Muyzer, G., E. C. De Waal & A. G. Uitterlinden, 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. envir. Microbiol. 59: 695–700.

    CAS  Google Scholar 

  • Nazaret, S., W. H. Jeffrey, E. Saouter, R. Von Haven & T. Barkay, 1994. merA gene expression in aquatic environments measured by mRNA production and Hg(II) volatilization. Appl. envir. Microbiol. 60: 4059–4065.

    CAS  Google Scholar 

  • Neilson, J. W., K. L. Josephson, S. D. Pillai & I. L. Pepper, 1992. Polymerase chain reaction and gene probe detection of the 2,4-dichlorophenoxyacetic acid degradation plasmid, pJP4. Appl. envir. Microbiol. 58: 1271–1275.

    CAS  Google Scholar 

  • Nold, S. C. & G. Zwart, 1998. Patterns and governing forces in aquatic microbial communities. Aquat. Ecol. 32: 17–35.

    Article  CAS  Google Scholar 

  • Nübel, U., F. Garcia-Pinchel, M. Kuhl & G. Muyzer, 1999. Spatial scale and the diversity of benthic cyanobacteria and diatoms in a salina. Hydrobiologia 401 (Dev. Hydrobiol. 138): 201–208.

    Article  Google Scholar 

  • Ohman, M. D., G. H. Theilacker & S. E. Kaupp, 1991. Immunochemical detection of prédation on ciliate protists by larvae of the Northern Anchovy (Engaulis mordax). Biol. Bull. 181: 500–504.

    Article  Google Scholar 

  • Orellana, M. V. & M. J. Perry, 1995. Optimization of an immunofluorescent assay of the internal enzyme ribulose-1,5-bisphosphate carboxylase (RUBISCO) in single phytoplankton cells. J.Phycol. 31:785–794.

    Article  CAS  Google Scholar 

  • Pace, N. R., 1997. A molecular view of microbial diversity and the biosphere. Science 276: 734–740.

    Article  PubMed  CAS  Google Scholar 

  • Pace, N. R., D. A. Stahl, D. J. Lane & G. J. Olsen, 1986. The analysis of natural microbial populations by ribosomal RNA sequences. Adv. microb. Ecol. 9: 1–55.

    CAS  Google Scholar 

  • Paine, R. T., 1980. Food webs: linkage, interaction strength and community infra-structure. J. anim. Ecol. 49: 667–686.

    Article  Google Scholar 

  • Palenik, B. & J. A. Koke, 1995. Characterization of a nitrogenregulated protein identified by cell surface biotinylation of a marine phytoplankton. Appl. envir. Microbiol. 61:3311–3315.

    CAS  Google Scholar 

  • Palenik, B. & A. M. Wood, 1998. Molecular markers of phytoplankton physiological status and their appliation at the level of individual cells. In Cooksey K. E. (ed.), Molecular Approaches to the Study of the Ocean. Chapman and Hall, London: 187–206.

    Google Scholar 

  • Palleroni, N. J., 1997. Prokaryotic diversity and the importance of culturing. Antonie Van Leeuwenhoek 72: 3–19.

    Article  PubMed  CAS  Google Scholar 

  • Palumbi, S. R., 1996. What can molecular genetic contribute to marine biogeography?An urchin’s tale. J. exp. mar. Biol. Ecol. 203: 75–92.

    Article  CAS  Google Scholar 

  • Palumbi, S. R. & F. Cipriano, 1998. Species identification using genetic tools— The value of nuclear and mitochondrial gene sequences in whale conservation. J. Heredity 89: 459–464.

    Article  CAS  Google Scholar 

  • Parker, P. G., A. A. Snow, M. D. Schug, G. C. Booton & P. A. Fuerst, 1998. What molecules can tell us about populations: choosing and using a molecular marker. Ecology 92: 361–382.

    Google Scholar 

  • Pernthaler, J., T. Posch, K. Simek, J. Vrba, R. Amann & R. Psenner, 1997. Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblage. Appl. envir. Microbiol. 63: 596–601.

    CAS  Google Scholar 

  • Pichard, S. L., L. Campbell, J. B. Kang, F. R. Tabita & J. H. Paul, 1996. Regulation of ribulose bisphosphate carboxylase gene expression in natural phytoplankton communities. 1. Diel rhythms. Mar. Ecol. Progr. Ser. 139: 257–265

    Article  CAS  Google Scholar 

  • Polz, M., D. Distel, B. Zarda, R. Amann, H. Felbeck, J. Ott & C. Cavanaugh, 1994. Phylogenetic analysis of a highly specific association between ectosymbiotic, sulfur-oxidizing bacteria and a mine nematode. Appl. envir. Microbiol. 60: 4461–4467.

    CAS  Google Scholar 

  • Pomeroy, L. R., 1974. The ocean’s food web, a changing paradigm. BioScience. 24: 499–504.

    Article  Google Scholar 

  • Proctor, L. M., 1997. Advances in the study of marine viruses. Microsc. Res. Techn. 37: 136–161.

    Article  CAS  Google Scholar 

  • Richerson, P., R. Armstrong & C. R. Goldman, 1970. Contemporaneous disequilibrium, a new hypothesis to explain the “paradox of the plankton”. Proc. natn. Acad. Sci. U. S. A. 67: 1710–1714.

    Article  CAS  Google Scholar 

  • Rowan, R., 1998. Diversity and ecology of zooxanthellae on coral reefs. J. Phycol. 34: 407–417.

    Article  Google Scholar 

  • Sayler, G. S., A. Layton, C. Lajoie, J. Bowman, M. Tschantz & J. T. Fleming, 1995. Molecular site assessment and process monitoring in bioremediation and natural attenuation. Appl. Biochem. Biotech. 54: 277–290.

    Article  CAS  Google Scholar 

  • Scanlan, D. J. & W. H. Wilson, 1999. Application of molecular techniques to addressing the role of p as key effector in marine ecosystems. Hydrobiologia 401 (Dev. Hydrobiol. 138): 151–177.

    Article  Google Scholar 

  • Schramm, A., L. H. Larsen, N. P. Revsbech, N. B. Ramsing, R. Amann & K. H. Schleifer, 1996. Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl. envir. Microbiol. 62: 4641–4647.

    CAS  Google Scholar 

  • Short, S. M. & C. A. Suttle, 1999. Use of the polymerase chain reaction and denaturing gradient gel electrophoresis to study diversity in natural virus communities. Hydrobiologia 401 (Dev. Hydrobiol. 138): 19–33.

    Article  CAS  Google Scholar 

  • Siegel, D. A., 1998. Resource competition in a discrete environment: Why are plankton distributions paradoxical? Limnol. Oceanogr. 43:1133–1146.

    Article  Google Scholar 

  • Smerdon, G. R., 1998. Towards the molecular analysis of copepod production. In K. E. Cooksey (ed.), Molecular Approaches to the Study of the Ocean. Chapman and Hall, London: 319–328.

    Google Scholar 

  • Sobecky, P. A., 1999. Plasmid ecology of marine sediment microbial communities. Hydrobiologia 401 (Dev. Hydrobiol. 138): 9–18.

    Article  CAS  Google Scholar 

  • Sobecky, P. A., T. J. Mincer, M. C. Chang, A. Toukdarian, & D. R. Helinski, 1998. Isolation of broad-host-range replic-ons from marine sediment bacteria. Appl. envir. Microbiol. 64: 2822–2830.

    CAS  Google Scholar 

  • Sobecky, P. A., M. A. Schell, M. A. Moran & R. E. Hodson, 1996. Impact of a genetically engineered bacterium with enhanced alkaline phosphatase activity on marine phytoplankton communities. Appl. envir. Microbiol. 62: 6–12.

    CAS  Google Scholar 

  • Steele, J. H., 1974. The structure of marine ecosystems. Harvard University Press, Cambridge, Massachusetts, 128 pp.

    Google Scholar 

  • Suzuki, M., 1997. The effect of protistan bacterivory on bac-terioplankton community structure. PhD. Thesis. Oregon State University, Corvallis, Oregon.

    Google Scholar 

  • Tilman, D., 1982, Resource competition and community structure. Princeton University Press, Princeton, New Jersey, 296 pp.

    Google Scholar 

  • Urbach, E. & S. W. Chisholm, 1998. Genetic diversity in Prochloro-coccus populations flow cytometrically sorted from the Sargasso Sea and Gulf Stream. Limnol. Oceanogr. 43:1615–1630.

    Article  CAS  Google Scholar 

  • Vanhannen, E. J., M. P. Vanagterveld, H. J. Gons & H. J. Laan-broek, 1998. Revealing genetic diversity of eukaryotic microorganisms in aquatic environments by denaturing gradient gel electrophoresis. J. Phycol. 34: 206–213.

    Article  CAS  Google Scholar 

  • Vanoppen, M. J. H., J. L. Olsen & W. T. Stam, 1995. Genetic variation within and among North Atlantic and Baltic populations of the benthic alga Phycodrys rubens (Rhodophyta). Eur. J. Phycol. 30:251–260.

    Article  Google Scholar 

  • Voytek, M. A., J. C. Priscu & B. B. Ward, 1999. The distribution and relative abundance of ammonia-oxidizing bacteria in lakes of the McMurdo Dry Valley, Antarctica. Hydrobiologia 401 (Dev. Hydrobiol. 138): 113–130.

    Article  CAS  Google Scholar 

  • Voytek, M. A. & B. B. Ward, 1995. Detection of ammonium-oxidizing bacteria in the beta-subclass of the class Proteobac-teria in aquatic samples with the PCR. Appl. envir. Microbiol. 61: 1444–1450.

    CAS  Google Scholar 

  • Wang, X., A. L. DeVries & C. C. Cheng, 1995. Antifreeze peptide heterogeneity in an Antarctic eel pout includes an unusually large major variant comprised of two 7 kDa type III AFPs linked in tandem. Biochim.Biophys. Acta 1247:163–172.

    Article  PubMed  Google Scholar 

  • Watve, M. G. & R. M. Gangal, 1996. Problems in measuring bacterial diversity and a possible solution. Appl. envir. Microbiol. 62: 4299–1301.

    CAS  Google Scholar 

  • Weis, V. M., Kampen, J. V. & R. P. Levine, 1998. Techniques for exploring symbiosis-specific gene expression in cnidarian/algal associations. In Cooksey K. E. (ed.), Molecular Approaches to the Study of the Ocean. Chapman and Hall, London: 435–448.

    Chapter  Google Scholar 

  • Williams, H. G., J. Benstead, M. E. Frischer & J. H. Paul, 1997. Alterations in plasmid DNA following natural transformation to populations of marine bacteria. Molecular Marine Biology and Biotechnology 6: 238–247.

    PubMed  CAS  Google Scholar 

  • Zehr, J. P., 1998. Molecular approaches to the study of the activities of marine organisms. In Cooksey K. E. (ed.), Molecular Approaches to the Study of the Ocean. Chapman and Hall, London: 91–112.

    Chapter  Google Scholar 

  • Zehr, J. P. & D. G. Capone, 1996. Problems and promises of assaying the genetic potential for nitrogen fixation in the marine environment. Microb. Ecol. 32: 263–281.

    Article  PubMed  CAS  Google Scholar 

  • Zehr, J. P. & W. D. Hiorns, 1998. Molecular approaches for studying the activities of marine organisms. In Cooksey K. E. (ed.), Molecular Approaches to the Study of the Ocean. Chapman and Hall, London: 91–112.

    Chapter  Google Scholar 

  • Zuccarello, G. C., J. A. West, M. Kamiya & R. J. King, 1999. A rapid method to score plastid haplotypes in red seaweeds and its use in determining parental inheritance of plastids in the red alga Bostrychia (Ceramiales). Hydrobiologia 401 (Dev. Hydrobiol. 138): 209–216.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. P. Zehr M. A. Voytek

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zehr, J.P., Voytek, M.A. (1999). Molecular ecology of aquatic communities: reflections and future directions. In: Zehr, J.P., Voytek, M.A. (eds) Molecular Ecology of Aquatic Communities. Developments in Hydrobiology, vol 138. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4201-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4201-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5827-8

  • Online ISBN: 978-94-011-4201-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics