Skip to main content

A Mathematical Model for the Analysis of Polymers P-V-T Diagrams

  • Chapter
  • 194 Accesses

Abstract

In this paper we discuss a model for the solidification of a molten polymer sample in a cylindrical cooling chamber in which a prescribed pressure is imposed by a movable piston. The system shrinks during cooling because of thermal contraction and of the increase of the crystalline component. The corresponding flow enters the model only through the divergence of the velocity field, which numerical simulations show to be the only non-negligible term. The resulting problem is a system of p.d.e.’s with a free boundary described by a nonlocal condition. The boundary conditions for the thermal field are also nonlocal, due to the presence of the metallic body of the piston and of a rod supporting a thermocouple along the axis of the cylinder, which behave as concentrated capacities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Andreucci, A. Fasano, R. Gianni, M. Primicerio, and R. RicciModelling nucleation in crystallization of polymersConf. Free Boundary Problems (M.Niezgodka, ed.), 1995, Zakopane.

    Google Scholar 

  2. D. Andreucci, A. Fasano, M. Paolini, M. Primicerio, and C. VerdiNumerical simulation of polymer crystallizationMath. Models & Meth. Appl. Sci. 4 (1994), 135–145.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Andreucci, A. Fasano, and M. PrimicerioA mathematical model for non isothermal crystallizationPoced. R.I.M.S., 1991, Kyoto, pp. 112–120.

    Google Scholar 

  4. D. Andreucci, On a mathematical model for the crystallization of polymers4th Europ. Conf. Math. in Industry (Hj. Wacker and W. Zulehner, eds.), Teubner Stuttgart, 1991, pp. 3–16.

    Google Scholar 

  5. D. Andreucci, A. Fasano, M. Primicerio, and R. RicciMathematical models in polymer crystallizationSurvey Math. Ind. 6 (1996), 7–20.

    MathSciNet  MATH  Google Scholar 

  6. G. Astarita and R. OconeContinuous and discontinuous models for trasport phenomena in polymersA.I.Ch.E.J. 33 (1987), 423–435.

    Article  Google Scholar 

  7. M. AvramiKinetics of phase change I,II III, J. Chem. Phys. 7, 8, 9(1939, 1940, 1941), 1103–1112, 212–224, 117–184.

    Google Scholar 

  8. V. P. Beghishev, S. A. Bolgov, I. A. Keapin, and A. Ya. MalkinGeneral treatment of polymer crystallizantion kinetics. Part 1: a new macrokinetic equation and its experimental verificationPolym. Eng. Sci. 24 (1984), 1396–1401.

    Article  Google Scholar 

  9. J. Berger and W. Schneider, Azone model of rate controlled solidificationPlast. Rubber Process. Appl.4 (1986), 127–133.

    Google Scholar 

  10. V. Capasso, A. Micheletti, M. De Giosa, and R. MininniStochastic modelling and statistics of polymer crystallization processesSurv. Math. Ind. 6 (1996), 109–132.

    MATH  Google Scholar 

  11. R. Caselli, S. Mazzullo, M. Paolini, and C. VerdiModels experiments and numerical simulation of isothermal crystallization of polymersECMI VII (A. Fasano and M. Primicerio, eds.), Teubner Stuttgart, 1993, pp. 167–174.

    Google Scholar 

  12. T. S. ChowMolecular kinetic theory of the glass transitionPolym. Eng. Sci. 24 (1984), 1079–1086.

    Article  Google Scholar 

  13. E. J. Clark and J. D. HoffmanRegime III crystallisation in polypropyleneMacromolecules 17 (1984), 878–885.

    Article  Google Scholar 

  14. C. De Luigi, R. Corrieri, and S. MazzulloModello matematico di cristallizzazione isobara non isoterma di polipropileneXII convegno italiano di scienza e tecnologia delle macromolecole, 1995, Altavilla Milicia.

    Google Scholar 

  15. G. Eder, H. Janeschitz-Kriegl, and S. LiedauerCrystallization processes in quiescent and moving polymer melts under heat transfer conditionsProg. Polym. Sci. 15 (1990), 629–714.

    Article  Google Scholar 

  16. A. FasanoModelling the solidification of polymers. An example of an ECMI cooperationICIAM 91 (R.E.O’Malley, ed.), 1991, Washington.

    Google Scholar 

  17. A. Fasano and A. ManciniExistence and uniqueness of a classical solution for a mathematical model describing the isobaric crystallization of a polymerInterfaces and Free Boundaries 1 (1999), to appear.

    Google Scholar 

  18. A. Fasano, A. Mancini, and S. MazzulloNon isothermal crystallization of polypropyleneComplex Flows and Industrial Processes (A. Fasano, ed.), Birkhäuser, 1999, to appear.

    Google Scholar 

  19. A. Fasano and M. PrimicerioOn mathematical models for nucleations and crystal growth processesBoundary Value Problems for PDE’s and Applications (J. L. Lions and C. Baiocchi, eds.), Masson - Paris, 1993, pp. 351–358.

    Google Scholar 

  20. A. FasanoOn a class of travelling wave solutions to phase change problems with an order parameterWorkshop on non linear analysis an applications, 1995, Warsaw, pp. 143–123.

    Google Scholar 

  21. A. Fasano, Ananalysis of phase transition modelsEJAM 7 (1996), 1–12.

    Google Scholar 

  22. M. R. Kamal and P. G. LafleurA structure oriented simulation of the injection molding of viscoelastic crystalline polymers. Part 1: model with fountain flow packing solidificationPolym. Eng. Sci. 26 (1986), 92–102.

    Article  Google Scholar 

  23. A. N. KolmogorovStatistical theory of crystallization of metalsBull. Acad. Sci. USSR Mat Ser.1 (1937), 355–359.

    Google Scholar 

  24. A. L. KovarskijHigh-pressure chemistry and physics of polymers (compressibility of polymers)CRC Press, London, 1994.

    Google Scholar 

  25. O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Ural’cevaLinear and quasi-linear equations of parabolic typeTransl. of Mathematical Monographs, vol. 23, American Mathematical Society, 1968.

    Google Scholar 

  26. A. ManciniNon isothermal crystallization of polypropilene: Numerical approachto appear.

    Google Scholar 

  27. A. ManciniProcesso di cristallizzazione non isoterma di polipropilene in condizioni iso- bare, internal report, Dip. Matematica “U.Dini” ¡ª Universit¨¤ degli Studi di Firenze, 1997.

    Google Scholar 

  28. A. ManciniA model for the crystallization of polypropylene under pressureECMI 98, 1999, Göteborg.

    Google Scholar 

  29. S. Mazzullo, R. Corrieri, and C. De LuigiMathematical model for isobaric non-isothermal crystallization of polypropyleneProgress in industrial mathematics at ECMI 96 (M. Brons, ed.), B.G. Teubner-Stuttgart., 1997.

    Google Scholar 

  30. S. Mazzullo, M. Paolini, and C. VerdiPolymer crystallization and processing: free boundary problems and their numerical approximationMath. Eng. Ind. 2 (1989), 219–232.

    MATH  Google Scholar 

  31. A. MichelettiProblemi di geometria stocastica nei processi di cristallizzazione di polimeri. aspetti modellistici statistici e computazionaliPh.D. thesis, Università degli Studi di Milano, 1997.

    Google Scholar 

  32. M. C. TobinTheory of phase transition kinetics with growth site impingementJ. Polym. Sci. Polym. Phys. Ed. 12 (1974), 394–406.

    Article  Google Scholar 

  33. A. ZiabickiGeneralized theory of nucleation kinetic i iiJ. Chim. Phys. 48 (1968), 4368–4380.

    Google Scholar 

  34. A. ZiabickiTheoretical analysis of oriented and non-isothermal crystallizationColloid Polymer Sci. 252 (1974), 297–221 433–447.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fasano, A., Mancini, A. (2000). A Mathematical Model for the Analysis of Polymers P-V-T Diagrams. In: Spigler, R. (eds) Applied and Industrial Mathematics, Venice—2, 1998. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4193-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4193-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5823-0

  • Online ISBN: 978-94-011-4193-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics