Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 82))

Abstract

The influence of electromagnetic exposure on ligand binding to receptor proteins is a putative early event of the interaction mechanism leading to biological effects. The most recent development of the quantum Zeeman-Stark model is reviewed, addressing the following points: losses due to the collisions of the ligand ion inside the hydrophobic binding crevice and thermal noise; evaluation of the attracting endogenous force of the binding site from the protein data base; out of equilibrium state of the ligand-receptor system due to the basal cell metabolism.

The biochemical output is the change of the ligand binding probability due to low intensity electromagnetic exposure at radio frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam, A. (1961) The principles of nuclear magnetism, Oxford, Clarendon Press, 264–353.

    Google Scholar 

  2. Adair, R.K. (1991) Constraints on biological effects of weak extremely low-frequency electromagnetic fields Phys. Rev. A 43, 1039–1048.

    ADS  Google Scholar 

  3. Adair, R.K. (1992) Criticism of Lednev’s mechanism for the influence of magnetic fields on biological systems, Bioelectromagnetics 13, 231–235.

    Google Scholar 

  4. Adey, W.R. (1980) Frequency and power windowing in tissue interactions with weak electromagnetic fields, Proc. IEEE 68, 119–125.

    Google Scholar 

  5. Astumian, R.D., Weaver, J.C., and Adair, R.K. (1995) Rectification and signal averaging of weak electric fields by biological cells, Proc. Natl. Acad. Sci. USA 92, 3740–3743.

    ADS  Google Scholar 

  6. Azanza, M.J. and Del Moral, A. (1994) Cell membrane biochemistry and neurological approach to biomagnetism, Progress in Neurobiology 44, 517–601.

    Google Scholar 

  7. Bach Andersen, J., Johansen, C., Frolund Pedersen, G., and Raskmark, P. (1995) On the possible health effects related to GSM and DECT transmissions, A tutorial study for the European Commission, Aalborg Univ., Denmark.

    Google Scholar 

  8. Balian, R. (1992) From Microphisics to Macrophisics, Vols I and II, Springer Verlag, Berlin, 331.

    Google Scholar 

  9. Bawin, S.M. and Adey, W.R. (1976) Sensitivity of calcium binding in central tissue to weak environmental electric fields oscillating at low frequency, Proc. Natl. Acad. USA 73, 1999–2003.

    ADS  Google Scholar 

  10. Bell, G.I. (1978) Model for the specific adhesion of cells to cells, Science 200, 618–627.

    ADS  Google Scholar 

  11. Berg, H.C. and Purcell, E.M. (1977) Physics of chemoreception, Biophys. Journal 20, 193–239.

    ADS  Google Scholar 

  12. Berman, E., Chacon, L., House, D., Koch, B.A., Koch, W.E., Leal, J., Lovtrup, S., Mantiply, E., Martin, A.H., Martucci, G.I., Mild, K.H., Monahan, J.C., Sandstrom, M., Shamsaifar, K., Tell, R., Trillo, M.A., Ubeda, A., and Wagner, P. (1990) Development of chicken embryos in a pulsed magnetic field, Bioelectromagnetics 11, 169.

    Google Scholar 

  13. Bezrukov, S.M. and Vodyanoy, I. (1995) Noise-induced enhancement of signal transduction across voltage dependent ion channel, Nature 378, 362–364.

    ADS  Google Scholar 

  14. Bianco, B., Chiabrera, A., Morro, A., and Parodi, M. (1988) Effects of magnetic exposure on ions in electric fields, Ferroelectrics 83, 355–365.

    Google Scholar 

  15. Bianco, B. and Chiabrera, A. (1992) From the Langevin-Lorentz to the Zeeman model of electromagnetic effects on ligand-receptor binding, Bioelectochem. Bioenerg. 28, 355–365.

    Google Scholar 

  16. Bianco, B, Chiabrera, A., Moggia, E., and Tommasi, T. (1993) Interaction mechanisms between electromagnetic fields and biological samples under a TEM exposure system, 2nd Int. IEEE-URSI Scient. Meet. Microwave in Medicine, Rome, Italy, Oct. 11–14.

    Google Scholar 

  17. Bianco, B., Chiabrera, A., D’Inzeo, G., Galli, A., and Palombo, A. (1993) Comparison between classical and quantum modelling of bioelectromagnetic interaction mechanisms, in Electricity and Magnetism in Biology and Medicine,M. Blank Eds., San Francisco Press, San Francisco, 537–539.

    Google Scholar 

  18. Bianco, B. (1994), Internal Report, ICEMmB at DIBE. University of Genoa.

    Google Scholar 

  19. Bianco, B., Chiabrera, A., and Kaufman, J.J. (1995) A new paradigm for studying the interaction of electromagnetic fields with living systems: an out-of-equilibrium characterization, BEMS 7th Annual Meet., Boston, USA, June 18–22.

    Google Scholar 

  20. Bianco, B., Chiabrera, A., Moggia, E., and Tommasi, T. (1997) Enhancement of the interaction between low-intensity R.F. e.m. fields and ligand binding due to cell basal metabolism, Wireless Networks 3, 477–487.

    Google Scholar 

  21. Blackman, C.F., Benane, S.G., Robinovltz, J.R., House, D.E., and Joines, W.T. (1985) A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro, Bioelectromagnetics 6, 327–337.

    Google Scholar 

  22. Blackman, C.F., Benane, S.G., and House, D.E. (1991) The influence of temperature during electric and magnetic field induced alteration of calcium-ion release from in vitro brain tissue, Bioelectromagnetics 12, 173–182.

    Google Scholar 

  23. Blackman, C.F., Blanchard, J.P., Benane, S.G., and House, D.E. (1995) The ion parametric resonance model predicts magnetic field parameters that affect nerve cells, FASEB J. 9, 547–551.

    Google Scholar 

  24. Blanchard, J.P. and Blackman, C.F. (1994) Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems, Bioelectromagnetics 15, 217–238.

    Google Scholar 

  25. Cancer risk and electromagnetic fields (1995) Scientific correspondence, Nature 375, 22–23.

    Google Scholar 

  26. Cavanna, M. (1996) Master Thesis (in Italian), DIBE, Univ. of Genoa.

    Google Scholar 

  27. Cavanna, M., Moggia, E., and Chiabrera, A. (1996) Reaction of a receptor protein to ligand binding under e.m. exposure, 18th Annual Int. Conf. IEEE Engineering in Medicine and Biology Soc., Amsterdam, The Netheriands, Oct.31-Nov.3.

    Google Scholar 

  28. CENELEC (1995) ENV-50166–1: Human exposure to electromagnetic fields - low frequency, European prestandard.

    Google Scholar 

  29. CENELEC (1995), ENV-50166–2: Human exposure to electromagnetic fields - high frequency, European prestandard.

    Google Scholar 

  30. Chandrasekhar, S. (1943) Stochastic problems it physics and astronomy, Rev. Mod. Phys 15, 1–89.

    MathSciNet  ADS  MATH  Google Scholar 

  31. Chiabrera, A., Hinsenkamp, M., Pilla, A.A., Ryaby, J., Ponta, D., Belmont, A., Beltrame, F., Grattarola, M., and Nicolini, C. (1979) Cytofluorometry of electromagnetically controlled cell dedifferentiation, J. of Histochemistry and Cytochemistry 27, 375.

    Google Scholar 

  32. Chiabrera, A., Viviani, R., Parodi, G., Vemazza, G., Hinsenkamp, M., Pilla, A.A., Ryaby, J., Beltrame, F., Grattarola, M., and Nicolini, C. (1980) Automated absorption image analysis of electromagnetically exposed frog erythrocytes, Cytometry 1, 42.

    Google Scholar 

  33. Chiabrera, A., Grattarola, M., and Viviani, R. (1984) Interaction between electromagnetic fields and cells microelectrophoretic effect on ligands and surface receptors, Bioelectromagetics 5, 173–191.

    Google Scholar 

  34. Chiabrera, A. and Rodan, G.A. (1984) The effect of electromagnetic fields on receptor-ligand interaction: A theoretical analysis, Journ. of Bioelectricity 3, 509–521.

    Google Scholar 

  35. Chiabrera, A., Bianco, B., Caratozzolo, F., Giannetti, G., Grattarola, M., and Viviani, R. (1985) Electric and magnetic field effects on ligand binding to cell membranein A. Chiabrera, C. Nicolini, and H.P. Schwan (eds)., Interaction between Electromagnetic Fields and Cells, Plenum, New York and London, 253–280.

    Google Scholar 

  36. Chiabrera, A. (1987) Comments on the dynamic characteristics of membrane ions in multifield cofigurations of low-frequency electromagnetic radiation, BEMS Annual Meet., June 21–25, Portland. USA.

    Google Scholar 

  37. Chiabrera, A. and Bianco, B. (1987) The role of the magnetic field in the e.m. interaction with ligand binding, in M. Blank and E. Findi (eds.) Mechanistic Approaches to Interactions of Electric and Magnetic Fields with Living Systems,Plenum Publishing Corporation, New York and London, 79–95.

    Google Scholar 

  38. Chiabrera, A., Morro, A., and Parodi, M. (1989) Water concentration and dielectric permittivity in molecular crevices, Il Nuovo Cimento sect. IID 7, 981–992.

    ADS  Google Scholar 

  39. Chiabrera, A., Bianco, B., Liebman, M.N., Kaufman, J.J., and Pilla, A.A. (1990) Movement of ions near macromolecules in the presence of electromagnetic exposure, BRAGS 10th Annual Meet., Philadelphia, USA, Oct. 14–17.

    Google Scholar 

  40. Chiabrera, A., Bianco, B., Parodi, M., Morro, A., and Liebman, M.N. (1991) Hydrophobicity of ion binding sites in proteins, BEMS 13th Annual Meet., Salt Lake City, USA, June 23–27.

    Google Scholar 

  41. Chiabrera, A., Bianco, B., Kaufman, J.J., and Pilla, A.A. (1991) Quantum dynamics of ion in molecular crevices under electromagnetic exposure in C.T. Brighton and S.R. Pollak (eds.), Electromagnetics in Biology and Medicine, San Francisco Press, San Francisco, 21–26.

    Google Scholar 

  42. Chiabrera, A., Bianco, B., Tommasi, T., and Moggia, E. (1992) Langevin-Lorentz and Zeeman-Stark models of bioelectromagnetic effects, Acta Pharm. 42, 315–322.

    Google Scholar 

  43. Chiabrera, A., Bianco, B., Kaufman, J.J., and Pilla, A.A. (1992) Bioelectromagnetic resonance interactions: endogenous field and noise, in B. Norden and C. Ramel (eds.), Interaction Mechanisms of Low-Level Electromagnetic Fields in Living Systems, Oxford Science Publications, Oxford, 164–179.

    Google Scholar 

  44. Chiabrera, A., Bianco, B., and Moggia, E. (1993) Effects of lifetimes on ligand binding modelled by the density operator, Bioelectrochem. Bioenerg. 30, 35–42.

    Google Scholar 

  45. Chiabrera, A., Bianco, B., Moggia, E., and Tommasi, T. (1994) The out-of-equilibrium steady state of a cell as reference for evaluating bioelectromagnetic effects, BEIMS 16th Annual Meet., Copenhagen, Derunark, June 12–17.

    Google Scholar 

  46. Chiabrera, A., Bianco, B., Moggia, E., and Tommasi, T. (1994) The interaction mechanism between e.m. fields and ion adsorption: Endogenous forces and collision frequency, Bioelectrochem. Bioenerg. 35, 33–37.

    Google Scholar 

  47. Chiabrera, A., Bianco, B., and Kaufman, J.J. (1995) Biological effectiveness of low intensity electromagnetic exposure: Non-linearity, out-of-equilibrium state and noise, Electromagnetic Compatibility EMC 95, Invited paper, URSI Open Meet., Commission K, Zurich, Switzerland, March 7–9.

    Google Scholar 

  48. Chiabrera, A., Bianco, B., Moggia, E., Tommasi, T., and Kaufman, J.J. (1995) Recent advances in biophysical modelling of radio frequency electromagnetic field interactions with living systems, Invited Paper, Proceedings of the State of the Science Colloquium, WTR and ICWCHR, Rome, Nov. 13–15.

    Google Scholar 

  49. Chiabrera, A., Hamnerius, Y., Bianco, B., Berquist, B., and Kenny, T. (1996) Design guidelines for “in vitro” and “in vivo” exposure conditions at sub-ELF/LF and their quality control, Position Paper, COST 244 European Commission DGXII andl 8th Annual Meeting of BEMS, Victoria, Canada, June 9–14.

    Google Scholar 

  50. Chiabrera, A., Bianco, B., Moggia, E., and Tommasi, T. (1996) Down-conversion of mobile telecommunications frequencies at ligand-receptors binding site, Symposium K1: Biological effects and mechanism of interaction, Invited paper, URSI XXV General Assembly, Lille, France, August 28-September 5.

    Google Scholar 

  51. Cohen-Tannoudji, C., Diu, B., and Laloe, F. (1977), Quantum Mechanics,Vols. I and 11, J. Wiley & Sons New York, 305–307.

    Google Scholar 

  52. Comments on clarification and application of an ion parametric resonance model for magnetic interactions with biological systems, Bioelectromagnetics 16, 268–275.

    Google Scholar 

  53. D’Inzeo, G., Galli, A., and Palonbo, A. (1993) Further investigations on non-thermal effects referring to the interaction between ELF fields and transmembrane ionic fluexes, Bioelectochem. Bioenerg. 30, 93–102.

    Google Scholar 

  54. D’Inzeo, G., Palombo, A., Tarrico, L., and Zago, M. (1995) Molecular simulation studies to understand non-thermal bioelectromagnetic interaction, BEMS 17th Annual Meet., Boston, Massachusetts, June 18–22.

    Google Scholar 

  55. Duglass, J.K., Wilkwns, L., Pantazaleou, E., and Moss, F. (1993) Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance, Nature 385, 337–340.

    ADS  Google Scholar 

  56. Durney, C.H., Rushforth, C.K., and Anderson, A.A. (1988) Resonant dc-ac magnetic fields: Calculated response, Bioelectromagnetics 9, 315–330.

    Google Scholar 

  57. Edmonds, D.T. (1993) Larmor precession as mechanism for the detection of static and alternating magnetic fields, Bioelechem. Bioenerg. 30, 3–12.

    Google Scholar 

  58. Eichwald, C. and Kaiser, F. (1995) Model of external influences on cellular signals transduction pathways including cytosolic calcium oscillations, Bioelectromagnetics 16, 75–85.

    Google Scholar 

  59. Engstrom, S. (1996) Dynamic properties of Lednev’s parametric resonance mechanism, Bioelectromagnetics 16, 58–70.

    Google Scholar 

  60. Ernst, J.A., Clubb, R.T., Zhou, H.X., Gronenbom, A.M., and Clore, G.M. (1995) Demonstration of positionally disordered water within a protein hydrophobic cavity by N.M.R., Science 267, 1813–1817.

    ADS  Google Scholar 

  61. Eichwald, C. and Kaiser, F. (1993) Model for receptor-controlled cytosolic calcium oscillations and for external influences on the signal pathways, Biophysical J. 65, 2047–2058.

    ADS  Google Scholar 

  62. Eichwald, C. and Kaiser, F. (1995) Model for external influences on cellular signal transduction pathways including cytosolic calcium oscillations, Bioelectromagnetics 16, 75–85.

    Google Scholar 

  63. Falugi, C., Grattarola, M., and Prestipino, G. (1987) Effects of low-intensity pulsed electromagnetic fields on the early development of sea urchin, Biophysical J. 51, 999–1003.

    ADS  Google Scholar 

  64. Fitzsimmons, R.J., Ryaby, J.T., Magee, F.P., and Baylink, D.J. (1995) IGF-II Receptor number is increased inTE-85 osteosarcoma cells by combined magnetic fields, J. Of bone and Mineral Research 10,812–817.

    Google Scholar 

  65. Fitzsimmons, R.J., Ryaby, J.T., Mohan, S., Magee, F.P., and Baylink, D.J. (1995) Combined magnetic fields increase Insulin-like Growth Factor-II in TE-85 human osteosarcoma bone cell cultures, Endocrinology 136, 3100–3107.

    Google Scholar 

  66. Galt, S., Sanblom, J. and Hamnerius, Y. (1993), Theoretical study of the resonance behaviour of an ion confined to a potential well in a combination of ac and dc magnetic fields, Bioelectromagnetics 14, 299–314.

    Google Scholar 

  67. Grattarola, M., Viviani, R., and Chiabrera, A. (1982) Modelling of the perturbation induced by low frequency electromagnetic fields on the membrane receptors of stimulated human lymphocyte, I: Influence of the fields on the system’s free energy, Studio Biophysica 91, 117–124.

    Google Scholar 

  68. Grattarola, M., Viviani, R., and Chiabrera, A. (1982) Modelling of the perturbation induced by low frequency electromagnetic fields on the membrane receptors of stimulated human lymphocyte, II: Influence of the fields on the mean lifetimes of the aggregation process, Studia Biophysica 91, 125–131.

    Google Scholar 

  69. Grattarola, M., Chiabrera, A., Bonanno, G., Viviani, R., and Raveane, A. (1985) Electromagnetic field effects on phytohemagglutinin (PHA) induced lymphocyte reactivation, in A. Chiabrera, C. Nicolini, and H.P. Schwan (eds.), Interactions between Electromagnetic Fields and Cells, Plenum Press, New York, 401–421.

    Google Scholar 

  70. Grundler, W., F. Kaiser, Keilman, F., and Walleczek, J. (1994) Mechanism of electromagnetic interaction with cellular systems, Naturwissenschaften 79, 551–559.

    ADS  Google Scholar 

  71. Halle, B. (1988) On the cyclotron resonance for magnetic field effects on trans-membrane ion conductivity, Bioelectromagnetics 9, 381–385.

    Google Scholar 

  72. Hill, T. H. (1975) Effect of rotation on the diffusion controlled rate of ligand-protein association, Proc. Natl. Acad. Sci. USA 72, 4918–4922.

    ADS  Google Scholar 

  73. Hinsenkamp, M., Chiabrera, A., and Bassett, C.A.L. (1978) Cell behaviour and DNA modification in pulsing electromagnetic fields, Acta Orthop. Belgica 44, 636.

    Google Scholar 

  74. Hollfelder, F., Kirby, A.J., and Tawfik, D.S. (1996) Off-the shelf proteins that rival tailor-made antibodies as catalysts, Nature 383, 60–63.

    ADS  Google Scholar 

  75. Honig, B. and Nicholls, A. (1995) Classical electrostatics in biology and chemistry, Science 268, 1144–1149.

    ADS  Google Scholar 

  76. Karplus, M. (1984) Dynamic Aspects of Protein Structure, Ann NY Aca.of Sci, 107–123.

    Google Scholar 

  77. Kaufman, J.J., Chiabrera, A., Hatem, M., Bianco, B., and Pilla, A.A. (1990) Numerical stochastic analysis of Lorentz force ion binding kinetics in electromagnetic bioeffects, BRAGS 10th Annual Meet., Philadelphia USA, Oct. 14–17.

    Google Scholar 

  78. Kinouchi, Y., Tanimoto, S., Ushita, T., Sato, K., Yamaguchi, H., and Miyamoto, H. (1988) Effects of static magnetic fields on diffusion in solution, Bioelectomagnetics 9, 159–166.

    Google Scholar 

  79. Kruglkov, I.L. and Dertinger, H. (1994) Stochastic resonance as a possible mechanism of amplification of weak electric signals in living cells, Bioelectromagnetics 15, 539–547.

    Google Scholar 

  80. Landau, L. and Lifschitz, E. (1966) Quantum Mechanics, Moscow MIR.

    Google Scholar 

  81. Lauffenburger, D.A. and Linderman, J.J. (1993) Receptors,Oxford University Press, Oxford.

    Google Scholar 

  82. Leal, J., Trillo, M.A., Ubeda, A., Abraira, B., Shamsaifar, K., and Chacon, L. (1986), Magnetic environment and embryonic development: a role of the earth’s field, IRCS Med. Sci. 14, 1145.

    Google Scholar 

  83. Lednev, V.V. (1991) Possible mechanism for the influence of weak magnetic fields on biological systems, Bioelectromagnetics 12, 71–75.

    Google Scholar 

  84. Lednev V.V. (1994) Interference with the vibrational energy sublevels of ions bound in calcium-binding proteins as the basis for the interaction of weak magnetic fields with biological systems, in A. H. Frey (ed.), On the Nature of Electromagnetic Field Interactions with Biological Systems,RG Landes Company, Medical Intelligens Unit, Boca Ranton, FL, 59–72.

    Google Scholar 

  85. Li, V.O.K. and Qiu, X. (1995), Personal communication system (PCS), Proc. IEEE, 83, 1210–1243.

    Google Scholar 

  86. Liboff, A.R., Williams, T, Strog, D.M, and Wistar, R. (1984) Time varying magnetic fields: Effect on DNA synthesis, Science 223, 818–820.

    ADS  Google Scholar 

  87. Liboff, A.R. (1985) Cyclotron resonance in membrane transport, in Interaction between electromagnetic field and cells, A. Chiabrera, C. Nicolini, and H.P. Schawn (eds.), Plenum Press, New York, 281.

    Google Scholar 

  88. Liboff, A.R. and McLeod, B.R. (1988) Kinetics of channelized membrane ions in magnetic fields, Bioelectromagnetics 9, 39.

    Google Scholar 

  89. Liboff A.R. (1995) Geomagnetic cyclotron resonance in living cells, J. Biol Phys. 12, 99–102.

    Google Scholar 

  90. Luben, R. A., Cain, C. D., Chi-Yun Chen, M., Rosen, D.M., and Adey, W.R. (1982) Effects of electromagnetic stimuli on bone and bone cells in vitro: inhibition of responses to parathyroid hormone by low-energy low-frequency fields, Proc. Natl. Acad. Sci. USA 79, 4180–4184.

    ADS  Google Scholar 

  91. Markov, M.S., Wang, S., and Pilla, A.A. (1993) Effects of weak low frequency sinusoidal and DC magnetic fields on myosin phosphorylation in a cell-free preparation, Bioelectrochem. Bioenerg. 30, 119–125.

    Google Scholar 

  92. McLeod, B.R. and Llboff, A.R. (1986) Dynamics characteristics of membrane ions in multifield configurations of low frequency electromagnetic radiation, Bioelectromagnetics 7,117.

    Google Scholar 

  93. Moggia, E. (1993) Dynamic properties of ions in solutions in the presence of magnetic fields, Internal Report and (1996) Ph.D. Thesis (in Italian), ICEmB at DIBE, University of Genoa.

    Google Scholar 

  94. Moggia, E., Tommasi, T., Bianco, B., and Chiabrera, A. (1993) Comparison of 5-state vs. 3-state coulombian Zeeman model of e.m.f. effects on ligand binding in M. Blanc (ed.), Electricity and Magnetism in Biology and Medicine, San Francisco Press, San Francisco, 556–558.

    Google Scholar 

  95. Moggia, E., Cavanna, M., and Chiabrera, A. (1996) The reaction component of the endogenous field in receptor proteins, EBEA ‘86, COST 244 Congress Nancy France, Feb. 28-March 2.

    Google Scholar 

  96. Moggia, E., Chiabrera, A., and Bianco, B. (1997) Fokker-Plank analysis of the Langevin-Lorentz equation: Application to ligand receptor binding under electromagnetic exposure, J. Appl. Phys. 82, 4669–4677.

    ADS  Google Scholar 

  97. Muehsan, D.J. and Pilla, A.A. (1996) Lorentz approach to static magnetic field effects on bound-ion dynamic and binding kinetics: Thermal noise considerations, Bioelectromagnetics 17, 89–99.

    Google Scholar 

  98. Noda, M., Johnson, D., Chiabrera, A., and Rodan, G.A. (1997) Effect of electric currents on DNA synthesis in raosteosarcoma cells: Dependence on conditions that influence cell growth, J. of Orthopaedic Research 5, 253–260.

    Google Scholar 

  99. Northrup, S.H (1988) Diffusion-controlled ligand binding to multiple competing cell-bound receptors, J. Phys. Chem. 92, 5847–5850.

    Google Scholar 

  100. Ott, E., Spano, M. (1995) Controlling chaos, Physic Today, 34–40, May.

    Google Scholar 

  101. Papers in Biological Effects and Electric and Magnetic Fields, D.O. Carpenter and S. Ayrapetyan (eds.) Vols. I and H, Academy Press, San Diego (1994).

    Google Scholar 

  102. Papers of the Proceedings of the Second EBEA Congress in Advances in Bioelectromagnetics,D. Miklavčič, R. Karba, L. Vodovnic, and A. Chiabrera (eds.), Special issue of Bioelectrochem. Bioenerg. 35 (1994).

    Google Scholar 

  103. Papers of the Proceedings of the COST 244 Workshop on Mobile Communications and Extremely Low Frequency Fields, D. Simunic (ed.), European Commission, DGXIII, Bled, Slovenia, Dec. 10–12 (1993) and papers of the Proceedings of the COST 244 Workshop on Biomedical Effects Relevant to Amplitude Modulated RF Fields, D. Simunic (ed.), European Commission, DGXIII, Kuopio, Finland, Sept. 3–4 (1995).

    Google Scholar 

  104. Papers of the Radiofrequency Radiation Standards: Biological Effects, Dosimetry, Epidemiology, and Public Health Policy, Edited by B.J. Klauenberg, M. Grandolfo, and D.N. Erwin, NATO ASI Series A274, Plenum Press (1995)

    Google Scholar 

  105. Papers of the Proceedings of the State of the Science Colloquium, WTR and ICWCHR, Nov. 13–15 (1995).

    Google Scholar 

  106. Pilla, A.A. (1974), Electrochemical information transfer at living cell membrane, Ann NY Acad. Sci. 238, 149–170.

    ADS  Google Scholar 

  107. Pilla, A.A. (1974), Mechanism of electrochemical phenomena in tissue growth and repair, Bioelectrochem. Bioenerg. 1, 227–243.

    Google Scholar 

  108. Pilla, A.A., Nasser, P.R., and Kaufman, J.J. (1993) On the sensitivity of cell and tissues to therapeutic and environmental electromagnetic fields, Bioelectrochem. Bioenerg. 30, 161–169.

    Google Scholar 

  109. Poponin, V. (1994) Non-linear stochastic resonance in weak e.m.f. interactions with diamagnetic ions bound within proteins, in M.J. Allen, S.F. Clearly, and A.F. Sowers (eds.), Charge and Field Effects in Biosystems-4,World Scientific, Singapore, 306–319.

    Google Scholar 

  110. Reiter, R.J (1994) The pineal gland and melatonin synthesis: Their responses to manipulations of static magnetic fields, in D.O. Carpenter and S. Ayrapetyan (eds.), Biological Effects of Electric and Magnetic Fields, Academy Press, San Diego, 261–285.

    Google Scholar 

  111. Rodan, S.B., and Rodan, G.A. (1981) Parathyroid hormone and isoproterenol stimulation of adenylate cyclase in rat osteosarcoma clonal cells, Biochem. Biophys. Acta 46, 673.

    Google Scholar 

  112. Rodan, G.A., Bourret, L.A., and Norton, L.A. (1987) DNA synthesis in cartilage cells is stimulated by oscillating electric fields, Science,199

    Google Scholar 

  113. Rodan, S.B. and Rodan, G.A. (1984) Hormone-adenylate cyclase coupling in osteosarcoma clonal cell lines, in P. Greengard and G.A. Robison (eds.), Advances in Cyclic Nucleotides and Protein Phosphorylation Research, Raven Press, New York, 127–134.

    Google Scholar 

  114. Rodbell, M. (1980) The role of hormone receptors and GTP-regulatory proteins in membrane transduction, Nature 284, 17.

    ADS  Google Scholar 

  115. Rubinow, S.I. (1975) Introduction to Mathematical Biology, J Wiley and Sons Eds., New York.

    MATH  Google Scholar 

  116. Ryaby, J.T., Fitzsimmons, R.J., Ni Aye Khin, Culley, P.I., Magee, F.P., Weinstein, A.M., and Baylink, D.J. (1994) The role of insulin-like growth factor II in magnetic regulation of bone formation, Bioelectrochem. Bioenerg. 35, 87–91.

    Google Scholar 

  117. Sargent III, M., Scully, M.O., and Lamb, W.E. (1974) Laser physics, Addison-Wesley Publ., Co. Reading, 79–95.

    Google Scholar 

  118. Shoup, D. and Szabo, A. (1982) Role of diffusion in ligand-binding to macromolecules and cell-bound receptors, Biophys. J. 40, 33–39.

    ADS  Google Scholar 

  119. Ter Haar, D. (1961) Theory and applications of the density matrix, Rept. Prog. Phys 24, 304–362.

    ADS  Google Scholar 

  120. Trillo, M.A., Ubeda, A., House, D.E., and Blackman, C.F. (1996) Magnetic fields at resonant conditions for the hydrogen ion affect neunte outgrowth in PC-12 cells: A test of the ion parametric resonance model, Bioelectromagnetism 17, 10–20.

    Google Scholar 

  121. Weaver, J.C. and Astumian, R.D. (1990) The response of living cells to very weak electric fields: the thermal noise limit, Science 247, 459–462.

    ADS  Google Scholar 

  122. Weaver, J.C. and Astumian, R.D. (1994) The thermal noise limit for threshold effects of electric and magnetic fields in biological systems, D.O. Carpenter and S. Ayrapetyan (eds.), Academic Press, San Diego, 83–104.

    Google Scholar 

  123. Weinans, H. and Prendergast, P.J. (1996) Tissue adaptation as a dynamical process far from equilibrium, Bone 19, 143–149.

    Google Scholar 

  124. Wickelgren, I.J. (1996) Local-area networks go wireless, IEEE Spectrum 33, 34–40.

    Google Scholar 

  125. Wiesenfeld, K. and Moss, F. (1995) Stochastic resonance and the benefits of noise from ice ages to cryfish and SQUIDS, Nature 373, 33–36.

    ADS  Google Scholar 

  126. Wyman, J., Gill, S.J. (1990), Binding and Linkage, Univ. Science Books, Mill Valley, CA.

    Google Scholar 

  127. Yamashita, M.M., Wesson, L., Eisenman, G., and Eisenberg, D. (1990) Where metal ions bind in proteins, Natl. Acad. Sci. USA 87, 5648–5652.

    ADS  Google Scholar 

  128. Zwanzig, R. (1990) Diffusion-controlled ligand binding to spheres partially covered by receptors: an effective medium treatment, Proc. Natl. Acad. Sci. USA 87, 5856–5857.

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chiabrera, A., Bianco, B., Giordano, S., Bruna, S., Moggia, E., Kaufman, J.J. (2000). Ligand Binding under RF EM Exposure. In: Klauenberg, B.J., Miklavčič, D. (eds) Radio Frequency Radiation Dosimetry and Its Relationship to the Biological Effects of Electromagnetic Fields. NATO Science Series, vol 82. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4191-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4191-8_47

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6405-4

  • Online ISBN: 978-94-011-4191-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics