Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 82))

Abstract

Precise evaluation of the near-field generated by transmitters operating in the radio frequency (RF) range (30 MHz to 6 GHz) is still an engineering challenge not only requiring sophisticated tools but also involving different procedures with a multitude of parameters to be considered. This paper reviews the state-of-the-art of near-field evaluation with emphasis on compliance testing of handheld RF transmitters with safety limits Similar tools and techniques can be utilized for the analysis and optimization of antennas operating in complex environments as well as for evaluation of special electromagnetic compatibility and interference problems occurring in the near-field of transmitters. Another area of applications is the analysis, evaluation and optimization of exposure setups used in RF safety research to investigate possible basic, therapeutic or adverse health effects from non-ionizing radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ICNIRP, CLC/TC211: Human Exposure to Electromagnetic Fields, Mar 1998.

    Google Scholar 

  2. ANSI/IEEE, C95. 1–1992, IEEE Standani for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300 GHz, New York, NY 10017, 1992.

    Google Scholar 

  3. CENELEC, prES 59005, CLC/TC211 (SEC) 17, Considerations for evaluation of human exposure to Electromagnetic Fields (EMFs) from Mobile Telecommunication Equipment (MTE) in the frequency range 30 MHz - 6 GHz, Brussels, Mar. 1998.

    Google Scholar 

  4. ARJB, STD-T56, Specific Absorption Rate (SAR) Estimation for Cellular Phone, Jan. 1998.

    Google Scholar 

  5. FCC, “Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields”, Tech. Rep. OET Bulletin 65, Federal Communications Commission, Washington, D.C. 20554, 1997.

    Google Scholar 

  6. NCRP, “Biological effects and exposure criteria for radiofrequency electromagnetic fields”, Tech. Rep., National Council on Radiation Protection and Measurement, Report No. 86, 1986.

    Google Scholar 

  7. CENELEC CLC/TC111B, European Prestandard (prENV 50166–2), Human Exposure to Electromagnetic Fields High-Frequency: 10kHz - 300 GHz, CENELEC, Brussels, Jan. 1995.

    Google Scholar 

  8. ARIB, Radiofrequency Exposure Protection Standard, 1993.

    Google Scholar 

  9. RR Bowman, “A probe for measuring temperature in radio-frequency-heated material”, IEEE Transactions on Microwave Theory and Techniques, vol. 24, no. 1, pp. 43–45, Jan. 1976.

    Article  ADS  Google Scholar 

  10. R. G. Olsen and R R. Bowman, “Simple nonperturbing temperature probe for microwave/radio frequency dosimetry”, Bioelectromagnetics, vol. 10, pp. 209–213, 1989.

    Article  Google Scholar 

  11. M. Burkhardt, K. Pokovic, M. Gnos, T. Schmid, and N. Kuster, “Numerical and experimental dosimetry of petri dish exposure setups”, Bioelectromagnetics, vol. 17, pp. 483–493, 1996.

    Article  Google Scholar 

  12. Q. Balzan, O. Garay, and F. R Steel, “Energy deposition in simulated human operators of 800-MHz portable transmitters”, IEEE Transactions on Vehicular Technology, vol. 27, no. 2, pp. 174–181, Nov. 1978.

    Article  Google Scholar 

  13. Q. Balzan, O. Garay, and F. R. Steel, “Heating of biological tissue in the in the induction field of VHF portable radio transmitters”, IEEE Transactions on Vehicular Technology, vol. 27, no. 2, pp. 51–56, May 1978.

    Article  Google Scholar 

  14. N. Kuster and Q. Balzan, “Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz”, IEEE Transactions on Vehicular Technology, vol. 41, no. 1, pp. 17–23, Feb. 1992.

    Article  Google Scholar 

  15. K. Meier, M. Burkhardt, T. Schmid, and N. Kuster, “Broadband calibration of E-field probes in lossy media“.

    Google Scholar 

  16. A. W. Guy, “Analyse of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom models”, IEEE Transactions on Microwave Theory and Techniques, vol. 19, no. 2, pp. 205–215, Feb. 1971.

    Article  ADS  Google Scholar 

  17. T. Kobayashi, T. Nojima, K. Yamada, and S. Uebayashi, “Dry phantom composed of ceramics and its application to SAR estimation”, IEEE Transactions on Microwave Theory and Techniques, vol. 41, no. 1, pp. 136–140, 41 1993.

    Article  ADS  Google Scholar 

  18. T. Nojima, S Nishiki, and T. Kobayashi, “An experimental SAR estimation of human head exposure to UHF near fields using dry-phantom models and a thermograph”, IEICE Transactions on Communications, vol. 77, no. 6, pp. 708–713, June 1994.

    Google Scholar 

  19. A. Antolini and A. Leoni, “Thermographie method for the determination of SAR. caused by cellular phones”, CSELT, vol. 25, no. 1, pp. 131–137, Feb. 1997.

    Google Scholar 

  20. T. C. Cetas, “Practical thermometry with a thermographie camera - calibration, and emittance measurements”, Rev. Sci. Inatrum., vol. 49, no. 2, pp. 245–254, 1978.

    Article  ADS  Google Scholar 

  21. H. L Bassen, M. Swicord, and J. Abita, “A miniature broad-band electric field probe”, Annals New York Academy of Science, vol. 20, no. 5, pp. 481–493, 1975.

    Article  ADS  Google Scholar 

  22. G. H. Wong, S. S. Stuchly, A. Kraszewski, and M. A. Stuchly, “Probing electromagntec fields in lossy spheres and cylinders”, IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 8, pp. 824–828, Aug. 1984.

    Article  ADS  Google Scholar 

  23. Indira Chatterjee, Yong-Gong Gu, and Om P. Gandhi, “Quantification of electromagnetic absorption in humans from body-mounted communication transceivers”, Transactions on Vehicular Technology, vol. 34, no. 2, pp. 55–63, May 1985.

    Article  Google Scholar 

  24. H. I. Bassen and G.S. Smith, “Electric field probes - a review”, IEEE Transactions on Microwave Theory and Techniques, vol. 31, no. 5, pp. 710–718, May 1983.

    Google Scholar 

  25. T. Schmid, O. Egger, and N. Kuster, “Automated E-field scanning system for dosimetric assessments”, IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 1, pp. 105–113, Jan. 1996.

    Article  ADS  Google Scholar 

  26. Katja Poković, Thomas Schmid, and Niels Kuster, “Design and characterization of E-field probes for lossy media”, 1999, submitted.

    Google Scholar 

  27. K. Pokovic, T. Schmid, and N. Kuster, “E-field probe with improved isotropy in brain simulating liquids”, in ELMAR’96, Zadar Croatia, June 1996, pp. 172–175.

    Google Scholar 

  28. Katja Pokovic, Thomas Schmid, Oliver Egger, and Niels Kuster, “High precision near-field scanner for analysis of handheld transmitters”, in USNC/URSI National Radio Science Meeting, Atlanta, USA, June 1997, p. 196.

    Google Scholar 

  29. M. Schwerdt, J. Berger, B. Schueppert, and K. Petermann, “Integrated optical E-field sensors with a balanced detection scheme”, IEEE Transactions on Electromagnetic Compatibility, vol. 39, no. 4, pp. 386–390, Nov. 1997.

    Article  Google Scholar 

  30. D. Hill, “Waveguide technique for the calibration of miniature implantable electric-field probes for use in microwave-bioeffects studies”, IEEE Transactions on Microwave Theory and Techniques, vol. 30, pp. 92–99, 1982.

    Article  ADS  Google Scholar 

  31. Katja Poković, Thomas Schmid, and Niels Kuster, “Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies”, in ICECOM’97, Dubrovnik, Croatia, October 15–17, 1997, pp. 120–124.

    Google Scholar 

  32. N. S. Nahman, M. Kanda, E. B. Larsen, and M. L. Crawford, “Methodology for standard electromagnetic field measurements”, IEEE Transactions on Instrumentation and Measurement, vol. 34, no. 4, pp. 490–503, Dec. 1985.

    Article  Google Scholar 

  33. Robert F. Cleveland, Jr., and T. Whit Athey, “Specific absorption rate (SAR) in models of the human head exposed to hand-held UHF portable radios”, Bioelectromagnetics, pp. 173–186, 1989.

    Google Scholar 

  34. S. S. Stuchly, M. Barski, and B. Tam et. al., “Computer-based scanning system for electromagnetic scanning”, Review on Scientific Intstumentation, vol. 54, no. 11, pp. 1547–1550, 1983.

    Article  ADS  Google Scholar 

  35. Quirino Balzano, Oscar Garay, and Thomas J. Manning, “Electromagnetic energy exposure of simulated users of portable cellular telephones”, IEEE Transactions on Vehicular Technology, no. 3, pp. 390–103, Aug. 1995.

    Article  Google Scholar 

  36. N. Kuster, R. Kästle, and T. Schmid, “Dosimetric evaluation of handheld mobile communications equipement with known precision”, IEICE Transactions on Communications, vol. 80, no. 5, pp. 645–652, May 1997.

    Google Scholar 

  37. NIS81 NAMAS, “The treatment of uncertainty in EMC measurement”, Tech. Rep., NAMAS Executive, 1994.

    Google Scholar 

  38. Barry N. Taylor and Christ E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results”, Tech. Rep., 1994.

    Google Scholar 

  39. Q. Yu, M. Aronsson, D. Wu, and O. P. Gandhi, “Automated SAR measurements for compliance testing of cellular telephones”, in IEEE Antennas and Propagation Symposium, Atlanta, USA, June 1997, pp. 1980–1983.

    Google Scholar 

  40. K. Haelvoet, S. Criel, F. Dobbelaere, and L. Martens, “Near-field scanner for the accurate characterization of electromagnetic fields in the close vicinity of electronic devices and systems”, IEEE Instrumentation and Measurement Technology Conference, pp. 1119–1123, June 1996.

    Google Scholar 

  41. IDX, “Near field measurement systems”, Tech. Rep., IDX Systems Inc., 20 NE Granger Ave Bldg. B., Coryallis OR 97330, USA, 1996.

    Google Scholar 

  42. Bsan, “3D near field scanner”, Tech. Rep., Man America Inc., 1997.

    Google Scholar 

  43. N. Kuster, Q. Balzan, and J. C. Lin, Mobile Communications Safety, Chapman & Hall, London, 1997.

    Google Scholar 

  44. Kane S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302–307, May 1966.

    ADS  MATH  Google Scholar 

  45. J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves”, Journal of Computational Physics, vol. 114, pp. 185–200, 1994.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Thomas Jurgens, Allen Taflove, Korada Umashankar, and Thomas G. Moore, “Finite-difference time-domain modeling of curved surfaces”, IEEE Transactions on Antennas and Propagation, vol. 40, no. 4, pp. 357–365, Apr. 1992.

    Article  ADS  Google Scholar 

  47. Vijaya Shaukar and Alireza H. Mohammadian, “A time-domain, finite-volume treatment for the Maxwell equations”, Electromagnetics, vol. 10, pp. 127–145, 1990.

    Article  Google Scholar 

  48. Z. M. Liu, A. S. Mohan, and T. A. Aubrey, “Em scattering using nonuniform mesh FDTD, PML and Mur’s ABC”, Electrarnagnetics, vol. 16, no. 4, pp. 341–358, July 1996.

    Article  Google Scholar 

  49. Thomas Weiland, “Verlustbehaftete Wellenleiter mit beliebiger Randkontur und Materialbelegung”, Electronics and Communication, vol. 33, no. 4, pp. 170–174, 1979.

    Google Scholar 

  50. S. S. Zivanovic, K. S. Yee, and K. K. Mei, “A subgridding method for the time-domain finite-difference method to solve Maxwell’s equations”, IEEE Transactions on Microwave Theory and Techniques, vol. 39, no. 3, pp. 471–179, Mar. 1991.

    Article  ADS  Google Scholar 

  51. A. D. Tinniswood, C. M. Purse, and O. P. Gandhi, “Computations of SAR distributions for two anatomically based models of the human head using cad files of commercial telephones and the paralleli7vd FDTD code”, Transactions on Antennas Propagation, vol. 46, no. 6, pp. 829–833, 1998.

    Article  ADS  Google Scholar 

  52. Achim Bahr, Sheng Gen Pan, Thomas Beck, Ralf Kästle, Thomas Schmid, and Niels Kuster, “Comparison between numerical and experimental near-field evaluation of a DCS1800 mobile telephone”, Radio Science, vol. 33, no. 6, pp. 1553–1563, Nov. 1998.

    Article  ADS  Google Scholar 

  53. K. L. Virga and Y. Rahamat-Samii, “Low-profile enhanced-bandwidth PIFA antennas for wireless communcations packaging”, IEEE Transactions on Microwaves Theory and Techniques, vol. 45, no. 10, pp. 1879–1888, Oct. 1997.

    Article  ADS  Google Scholar 

  54. Z. D. Liu, P. S. Hall, and D. Wake, “Dual-frequency planar inverted-F antenna”, IEEE Transactions on Antennas and Propagation, vol. 45, no. 10, pp. 1451–1457, Oct. 1997.

    Article  ADS  Google Scholar 

  55. Ansoft Corporation, “Maxwell strata, product information”, Tech. Rep., Four Station Square, Suite 660, Pittsburgh, PA 15219–1119, USA, 1994.

    Google Scholar 

  56. Inc. Boulder Microwave Tèchnologies, “Ensemble, product information”, Tech. Rep., 2336 Canyon Blvd, Suite 102, Boulder, Colorado 80302, USA, 1994.

    Google Scholar 

  57. Roger Yew-Slow Tay, Quirino Balzan, and Niels Kuster, “Dipole configurations with strongly improved radiation efficiency for hand-held transceivers”, IEEE Transactions on Antennas and Propagation, vol. 46, no. 6, pp. 798–806, 1998.

    Article  ADS  Google Scholar 

  58. Peter P. Silvester and Ronald F. Ferrari, Finite Elements for Electrical Engineers, Cambridge University Press, Cambridge UK, 1983.

    MATH  Google Scholar 

  59. A. Bossavit, “A rationale for edge elements in 3-D fields computations”, IEEE Transactions on Magnetics, vol. 24, pp. 74–79, 1988.

    Article  ADS  Google Scholar 

  60. U. Pekel and R. Mittra, “A finite-element-method frequency domain application of the perfectly matched layer (PML) concept”, Microwave and Optical Technology Letters, pp. 117–122, June 1995.

    Google Scholar 

  61. Michael A. Morgan, “Finite element calculation of microwave absorption by the cranial structure”, IEEE Transactions on Biomedical Engineering, vol. 28, no. 10, pp. 687–695, Oct. 1981.

    Article  Google Scholar 

  62. R. J. Spiegel, “The thermal response of a human in the near-zone of a resonant thin-wire antenna”, IEEE Transactions on Microwave Theory and Techniques, vol. 30, no. 2, pp. 177–185, Feb. 1982.

    Article  MathSciNet  ADS  Google Scholar 

  63. Dina Šimunić, Paul Wach, Werner Renhart, and Rudolf Stollberger, “Spatial distribution of high-frequency electromagnetic energy in human head during MRI: Numerical results and measurements”, IEEE Transactions on Biomedical Engineering, vol. 43, no. 1, pp. 88–94, Jan. 1996.

    Article  Google Scholar 

  64. Lars H. Bomholt, “Coupling of the generalized multipole technique and the Finite Element method”, ACES, vol. 9, no. 3, pp. 63–68, 1994.

    Google Scholar 

  65. H. O. Ruoss, U. Jakobus, and F. M. Landsdorfer, “Iterative coupling of MoM and MMP for the analysis of metallic structures radiating in the presence of dielectric bodies”, Applied Computational Electromagnetics Society, 1998.

    Google Scholar 

  66. R. W. P. King, “Electromagnetic field generated in model of human head by simplified telephone transceiver”, Radio Science, vol. 30, no. 1, pp. 267–281, Jan. 1995.

    Article  ADS  Google Scholar 

  67. N. Kuster, “Multiple multipole method for simulating EM problems involving biological bodies”, IEEE Transactions on Biomedical Engineering, vol. 40, no. 7, pp. 611–620, July 1993.

    Article  Google Scholar 

  68. Camelia Gabriel, “Phantom models for antenna design and exposure assessment”, in IEE Collogium on Design of Mobile Antennas for Optimal Performance in the Prescens of Biological Tissue, Jan. 1997.

    Google Scholar 

  69. A. Hizal and Y. K. Baykal, “Heat potential distribution in an inhomogeneous spherical model of a cranial structure exposed to microwaves due to loop or dipole antennas”, IEEE Transactions on Microwave Theory and Techniques, vol. 26, no. 8, pp. 607–558, Aug. 1978.

    Article  ADS  Google Scholar 

  70. Y. Amemiya and S. Uebayashi, “Distribution of absorbed power inside a sphere simulating the human head in the near field of a λ/2 dipole antenna”, Electronics and Communications in Japan, vol. 66, no. 9, pp. 64–72, Sept. 1983.

    Article  Google Scholar 

  71. Magdy F. Iskander, Peter W. Barber, Carl H. Durney, and Habib Massoudi, “Irradiation of prolate spheroidal models of humans in the near-field of a short electric dipole”, IEEE Transactions on Microwave Theory and Techniques, vol. 28, no. 7, pp. 801–807, July 1980.

    Article  Google Scholar 

  72. Akhlesh Lakhtakia, Magdy F. Iskcander, Carl H. Durney, and Habib Massoudi, “Near-field absorption in prolate spheroidal models of human exposed to a small loop antenna of arbitrary orientation”, IEEE Transactions on Microwave Theory and Techniques, vol. 29, no. 6, pp. 588–594, June 1981.

    Article  ADS  Google Scholar 

  73. I. Chatterjee, M. J. Hagmann, and O. P. Gandhi, “Electromagnetic absorption in a multilayered slab model of tissue under near-field exposure conditions”, Bioelectromagnetics, vol. 1, pp. 379–388, 1980.

    Article  Google Scholar 

  74. D. P. Nyquist, K. M. Chen, and B. S. Guru, “Coupling between small thin-wire antennas and a biological body”, IEEE Transactions on Antennas and Propagation,vol. 25, no. 6, pp. 863–866, Nov. 1977.

    Article  ADS  Google Scholar 

  75. K. Karimullah, K. M. Chen, and D. P. Nyquist, “Electromagnetic coupling between a thin-wire antenna and a neighboring biological body: Theory and experiment”, IEEE Transactions on Microwave Theory and Techniques, vol. 28, no. 11, pp. 1218–1225, Nov. 1980.

    Google Scholar 

  76. Arthur W. Guy and Chung-Kwang Chou, “Specific absorption rates of energy in man models exposed to cellular UHF mobile-antenna fields”, IEEE Transaction. on Microwave Theory and Technique, no. 6, pp. 671–680, June 1986.

    Article  ADS  Google Scholar 

  77. H. Tamura, Y. Ishikawa, T. Kobayashi, and T. Nojima, “A dry phantom material composed of ceramic and graphite powder”, IEEE Transactions on Electromagnetic Compatibility, vol. 39, no. 2, pp. 132–137, May 1997.

    Article  Google Scholar 

  78. Klaus Meier, Scientific Bases for Dosimetric Assessments in Compliance Tests, PhD thesis, Diss. ETH Nr. 11722, Zurich, 1996.

    Google Scholar 

  79. Maria A. Stuchly, Andrzej Kraszewski, Stanislaw S. Stuchly, George W. Hartsgrove, and Ronald J. Spiegel, “RF energy deposition in a heterogeneous model of man: Near-field exposure”, IEEE Transactions on Biomedical Engineering, no. 12, pp. 944–949, Dec. 1987.

    Article  Google Scholar 

  80. Michael Burkhardt and Niels Kuster, “Appropriate modeling of the ear for compliance testing of handheld MTE with safety limits”, in Twentieth Annual Meeting of the Bioelectromagnetics Society, St. Pete Beach, Florida, USA, June 1998, p. 79.

    Google Scholar 

  81. Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard Kühn, and Niels Kuster, “The dependence of EM energy absorption upon human head modeling at 900 MHz”, IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1855–1863, Oct. 1996.

    Article  ADS  Google Scholar 

  82. K. Meier, V. Hornbach, R. Kästle, R Y-S. Tay, and N. Kuster, “The dependence of electromagnetic energy absorption upon human-head modeling at 1800 MHz”, IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 11, pp. 2058–2062, Nov. 1997.

    Article  ADS  Google Scholar 

  83. P. J. Dimbylow and S. M. Mann, “SAR calculations in an anatomically realistic model of the head for mobile communication transceivers at 900 MHz and 1. 8 GHz”, Physics in Medicine and Biology, vol. 39, pp. 1537–1553, 1994.

    Article  ADS  Google Scholar 

  84. Om P. Gandhi, Gianluca Lazzi, and Cynthia M. Purse, “Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz”, IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1884–1897, Oct. 1996.

    Article  ADS  Google Scholar 

  85. Om P. Gandhi and Jin Yuan Chen, “Electromagnetic absorption in the human head from experimental 6-GHz handheld tranceivers”, IEEE Transactions on Electromagnetic Compatibility, vol. 37, pp. 547–858, 1995.

    Article  Google Scholar 

  86. F. Schoenborn, M. Burkhardt, and N. Kuster, “Differences in energy absorption between heads of adults and children in the near field of sources”, Health Physics, 1998.

    Google Scholar 

  87. Michael A. Jensen and Yahya Rahmat-Samii, “EM interaction of handset antennas and a human in personal communications”, in Proceedings of the IEEE, 1995, vol. 83, pp. 7–17.

    Google Scholar 

  88. Soichi Watanabe, Masao Taki, Toshio Nojima, and Osamu Fujiwara, “Characteristics of the SAR distributions in a head exposed to electromagnetic fields radiated by hand-held portable radio”, IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1874–1883, Oct. 1996.

    Article  ADS  Google Scholar 

  89. Michal Okoniewski and Maria A. Stuchly, “A study of the handset antennas and human body interaction”, IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1855–1863, Oct. 1996.

    Article  ADS  Google Scholar 

  90. Paolo Bernardi, Marta Cavagnaro, and Stefano Pisa, “Evaluation of the SAR distribution in the human head for cellular phones used in a partially dosed environment”, IEEE Transactions on Electromagnetic Compatibility, vol. 38, no. 3, pp. 357–366, Aug. 1996.

    Article  Google Scholar 

  91. J. Cooper and V. Hornbach, “Increase in specific absorption rate in human heads arising from implantations”, Electronics Letters, vol. 32, no. 24, pp. 2217–2219, 1996.

    Article  Google Scholar 

  92. S. Mazur, D. Martensson, and C. Tbernevik, “Comparisons of measurements and FDTD calculations of electromagnetic near-fields and SAR distributions”, in Eighteenth Annual Meeting of the Bioelectromagnetics Society, Victoria, Canada, June 1996, p. 123.

    Google Scholar 

  93. M. Siegbahn, S. Mazur, and C. Törnevik, “Comparisons of measurements and FDTD calculationsof mobile phone electromagnetic far-fields and near-fields”, in IEEE Antennas and Propagation Symposium, Montreal, Canada, July 1997, pp. 978–981.

    Google Scholar 

  94. M. Burkhardt, N. Chavannes, K. Pokovic, T. Schmid, and N. Kuster, “Study on the FDTD performance for transmitters in complex environments” in ICECOM’97, Dubrovnik, Croatia, Oct. 1997, pp. 83–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Poković, K., Burkhardt, M., Schmid, T., Kuster, N. (2000). Experimental and Numerical Near-Field Evaluation of RF Transmitters. In: Klauenberg, B.J., Miklavčič, D. (eds) Radio Frequency Radiation Dosimetry and Its Relationship to the Biological Effects of Electromagnetic Fields. NATO Science Series, vol 82. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4191-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4191-8_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6405-4

  • Online ISBN: 978-94-011-4191-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics